The Calm Policymaker:
 Imperfect Common Knowledge in New Keynesian Models

John Barrdear ${ }^{1}$
${ }^{1}$ Bank of England and Centre for Macroeconomics

June 2018

Disclaimer: The views expressed are those of the author and do not necessarily reflect the views of the Bank of England or its Committees.

How do monetary policy and nominal stability work?

- A long literature on price level determinacy.
- Does nominal stability require an 'active' central bank?
- "Naïvely estimated" interest rate rules often violate the Taylor principle.
- Can we safely raise the inflation target?
- Is the liquidity trap real?
- Is neo-Fisherianism real?

What I do

- Explore determinacy in models with Imperfect Common Knowledge.
- Apply this to the New Keynesian model in particular.
- Four sources of indeterminacy in DSGE models:

1. Multiple steady-state equilibria.
2. For each steady state, multiple purely-forward-looking solutions.
3. For each forward solution, multiple backward-looking solutions.
4. For each backward solution, multiple rational bubbles.

- Three ingredients to ICK:
- Agents are fully (Bayes) rational.
- Agents lack full information. Each observes idiosyncratically noisy signals.
- There is strategic interaction between agents.

Key results under ICK

- The NK model solves uniquely, regardless of the Taylor principle.
- No backward-looking solutions or bubbles \Rightarrow no need for Blanchard-Kahn.
- Standard results remain when the Taylor principle is satisfied.
- When $\phi_{\pi}<\phi_{\pi}^{\text {Taylor }}$, the price level - not just inflation - is stationary.
- Persistence is a function of central bank design, increasing in both ϕ_{π} and ϕ_{y}.
- A unique and stable solution exists under an interest rate peg.
- cf. Sargent \& Wallace (1975).

Related literature

- ICK/Dispersed information: Woodford (2003); Nimark (2008, 2017); Lorenzoni (2009); Angeletos \& La'O (2009, 2010, 2015); Graham \& Wright (2010); Graham (2011); Melosi (2014); Kohlhas (2014); Angeletos \& Lian (2016).
- Equilibrium selection: Blanchard \& Kahn (1980) (+ Uhlig + Klein + Sims); Woodford (2001); Evans \& Honkapohja (2003); many others.
- Cochrane vs McCallum: Cochrane (2007); McCallum (2009a); Cochrane (2009); McCallum (2009b); Cochrane (2011); McCallum (2012b).
- The liquidity trap: Benhabib, Schmitt-Grohé and Uribe (2001); many others.
- The neo-Fisherian question: Cochrane (2017); García-Schmidt \& Woodford (2015).
- Uniqueness in global games: Morris \& Shin $(2000,2002)$.

A toy model

A hidden state:

$$
x_{t}=\rho x_{t-1}+u_{t}
$$

$$
s_{i, t}=x_{t}+v_{i, t}
$$

$u_{t} \sim N\left(0, \sigma_{u}^{2}\right)$
$v_{i, t} \sim N\left(0, \sigma_{v}^{2}\right)$

A toy model

A hidden state:

$$
x_{t}=\rho x_{t-1}+u_{t}
$$

$$
u_{t} \sim N\left(0, \sigma_{u}^{2}\right)
$$

Agent i's signal:

$$
s_{i, t}=x_{t}+v_{i, t}
$$

$$
v_{i, t} \sim N\left(0, \sigma_{v}^{2}\right)
$$

Agent i 's action:

$$
z_{i, t}=E_{i, t}\left[x_{t}\right]+\beta E_{i, t}\left[z_{t+1}\right]
$$

$$
z_{t} \equiv \int_{0}^{1} z_{i, t} d i
$$

A toy model

A hidden state:

$$
x_{t}=\rho x_{t-1}+u_{t}
$$

$$
u_{t} \sim N\left(0, \sigma_{u}^{2}\right)
$$

Agent i's signal:

$$
s_{i, t}=x_{t}+v_{i, t}
$$

$$
v_{i, t} \sim N\left(0, \sigma_{v}^{2}\right)
$$

Agent i 's action:

$$
z_{i, t}=E_{i, t}\left[x_{t}\right]+\beta E_{i, t}\left[z_{t+1}\right]
$$

$$
z_{t} \equiv \int_{0}^{1} z_{i, t} d i
$$

The average action:

$$
z_{t}=\bar{E}_{t}\left[x_{t}\right]+\beta \bar{E}_{t}\left[z_{t+1}\right]
$$

Solving the baby model with full information

$$
z_{t}=x_{t}+\beta E_{t}\left[z_{t+1}\right] \quad x_{t}=\rho x_{t-1}+u_{t}
$$

Solving the baby model with full information

$$
z_{t}=x_{t}+\beta E_{t}\left[z_{t+1}\right] \quad x_{t}=\rho x_{t-1}+u_{t}
$$

The full set of solutions (following Blanchard, 1979):

$$
\begin{aligned}
& z_{t}=\left(1-\xi_{t}\right) z_{t}^{(F)}+\xi_{t} z_{t}^{(B)}+\theta_{t} \quad \text { where } \quad z_{t}^{(F)}=\sum_{q=0}^{\infty}(\beta \rho)^{q} x_{t} \\
& \xi_{t} \in \mathbb{R} \\
& z_{t}^{(B)}=\frac{1}{\beta}\left(z_{t-1}-x_{t-1}\right) \\
& \theta_{t}=\beta E_{t}\left[\theta_{t+1}\right]
\end{aligned}
$$

Solving the baby model with full information

$$
z_{t}=x_{t}+\beta E_{t}\left[z_{t+1}\right] \quad x_{t}=\rho x_{t-1}+u_{t}
$$

The full set of solutions (following Blanchard, 1979):

$$
\begin{aligned}
z_{t} & =\left(1-\xi_{t}\right) z_{t}^{(F)}+\xi_{t} z_{t}^{(B)}+\theta_{t} \quad \text { where } \quad z_{t}^{(F)} & =\sum_{q=0}^{\infty}(\beta \rho)^{q} x_{t} \\
\xi_{t} \in \mathbb{R} & z_{t}^{(B)} & =\frac{1}{\beta}\left(z_{t-1}-x_{t-1}\right) \\
& \theta_{t} & =\beta E_{t}\left[\theta_{t+1}\right]
\end{aligned}
$$

The Blanchard-Kahn conditions:
$\mathrm{A} 1: z_{t}$ is stationary
A2: $\left|\frac{1}{\beta}\right|>1$
\Rightarrow Only $z_{t}=z_{t}^{(F)}$ remains: $\xi_{t}=\theta_{t}=0 \forall t$

Solving the model with dispersed info

$$
z_{t}=\bar{E}_{t}\left[x_{t}\right]+\beta \bar{E}_{t}\left[z_{t+1}\right] \quad x_{t}=\rho x_{t-1}+u_{t} \quad s_{i, t}=x_{t}+v_{i, t}
$$

- The Kalman filter ensures that the hierarchy of expectations is $\operatorname{AR}(1)$:

$$
X_{t} \equiv \underset{\substack{x_{t} \\
\bar{E}_{t}\left[X_{t}\right] \\
(\infty \times 1)}}{\left[\begin{array}{c}
\\
\hline
\end{array}\right] X_{t-1}+\Psi u_{t} .}
$$

Solving the model with dispersed info

$$
z_{t}=\bar{E}_{t}\left[x_{t}\right]+\beta \bar{E}_{t}\left[z_{t+1}\right] \quad x_{t}=\rho x_{t-1}+u_{t} \quad s_{i, t}=x_{t}+v_{i, t}
$$

- The Kalman filter ensures that the hierarchy of expectations is $\operatorname{AR}(1)$:

$$
X_{t} \equiv \underset{\substack{x_{t} \\
\bar{E}_{t}\left[X_{t}\right] \\
(\infty \times 1)}}{\left[\begin{array}{c}
x_{1} \\
\hline
\end{array}\right]=\Phi X_{t-1}+\Psi u_{t} .}
$$

- Define S and T such that: $\begin{aligned} & S X_{t}=x_{t} \\ & T X_{t}=\bar{E}_{t}\left[X_{t}\right]\end{aligned}$
- The purely forward-looking solution is:

$$
z_{t}=S T(I-\beta \Phi T)^{-1} X_{t} \quad \xrightarrow{\sigma_{v} \rightarrow 0}\left(\frac{1}{1-\beta \rho}\right) x_{t}
$$

Backward-looking solutions: example 1

$$
z_{t}=\bar{E}_{t}\left[x_{t}\right]+\beta \bar{E}_{t}\left[z_{t+1}\right] \quad x_{t}=\rho x_{t-1}+u_{t} \quad s_{i, t}=x_{t}+v_{i, t}
$$

Consider the equivalent to the purely backward solution under full info:

$$
z_{t}=\frac{1}{\beta}\left(z_{t-1}-\bar{E}_{t-1}\left[x_{t-1}\right]\right) \quad: \text { Candidate solution }
$$

Backward-looking solutions: example 1

$$
z_{t}=\bar{E}_{t}\left[x_{t}\right]+\beta \bar{E}_{t}\left[z_{t+1}\right] \quad x_{t}=\rho x_{t-1}+u_{t} \quad s_{i, t}=x_{t}+v_{i, t}
$$

Consider the equivalent to the purely backward solution under full info:

$$
z_{t}=\frac{1}{\beta}\left(z_{t-1}-\bar{E}_{t-1}\left[x_{t-1}\right]\right) \quad: \text { Candidate solution }
$$

Step it forward and take the average expectation:

$$
\bar{E}_{t}\left[z_{t+1}\right]=\frac{1}{\beta} \bar{E}_{t}\left[z_{t}-\bar{E}_{t}\left[x_{t}\right]\right]
$$

Backward-looking solutions: example 1

$$
z_{t}=\bar{E}_{t}\left[x_{t}\right]+\beta \bar{E}_{t}\left[z_{t+1}\right] \quad x_{t}=\rho x_{t-1}+u_{t} \quad s_{i, t}=x_{t}+v_{i, t}
$$

Consider the equivalent to the purely backward solution under full info:

$$
z_{t}=\frac{1}{\beta}\left(z_{t-1}-\bar{E}_{t-1}\left[x_{t-1}\right]\right) \quad: \text { Candidate solution }
$$

Step it forward and take the average expectation:

$$
\bar{E}_{t}\left[z_{t+1}\right]=\frac{1}{\beta} \bar{E}_{t}\left[z_{t}-\bar{E}_{t}\left[x_{t}\right]\right]
$$

Problems:

- Others' actions are unknown: $\bar{E}_{t}\left[z_{t}\right] \neq z_{t}$
- The LIE breaks down: $\bar{E}_{t}\left[\bar{E}_{t}\left[x_{t}\right]\right] \neq \bar{E}_{t}\left[x_{t}\right]$

Backward-looking solutions: example 2

Consider

$$
z_{t}=\boldsymbol{\delta}^{\prime} X_{t}+\phi z_{t-1}
$$

Backward-looking solutions: example 2

Consider $\quad z_{t}=\boldsymbol{\delta}^{\prime} \boldsymbol{X}_{t}+\phi z_{t-1}$

This requires, inter alia, $\bar{E}_{t}\left[z_{t-1}\right]=\chi z_{t-1} \quad$ where $\quad \chi=\frac{1}{\beta \phi^{2}}$

Backward-looking solutions: example 2

$$
\text { Consider } \quad z_{t}=\boldsymbol{\delta}^{\prime} X_{t}+\phi z_{t-1}
$$

This requires, inter alia, $\bar{E}_{t}\left[z_{t-1}\right]=\chi z_{t-1} \quad$ where $\quad \chi=\frac{1}{\beta \phi^{2}}$

But $\bar{E}_{t}\left[z_{t-1}\right]=\bar{E}_{t-1}\left[z_{t-1}\right]+h_{t} \underbrace{\left\{\rho x_{t-1}+u_{t}-\bar{E}_{t-1}\left[x_{t}\right]\right\}}$
Average information obtained from agents' signals

Backward-looking solutions: example 2

Consider

$$
z_{t}=\boldsymbol{\delta}^{\prime} X_{t}+\phi z_{t-1}
$$

This requires, inter alia, $\bar{E}_{t}\left[z_{t-1}\right]=\chi z_{t-1} \quad$ where $\quad \chi=\frac{1}{\beta \phi^{2}}$

$$
\text { But } \begin{aligned}
\bar{E}_{t}\left[z_{t-1}\right]= & \bar{E}_{t-1}\left[z_{t-1}\right]+h_{t} \underbrace{\left\{\rho x_{t-1}+u_{t}-\bar{E}_{t-1}\left[x_{t}\right]\right\}}_{\text {Average information obtained from agents' signals }}
\end{aligned}
$$

Contradiction:

- z_{t-1} cannot be a function of $u_{t} \quad \Rightarrow h_{t}=0$
- $\rho>0 \Rightarrow s_{i, t}$ is informative about X_{t-1} and $z_{t-1} \quad \Rightarrow h_{t} \neq 0$

Rational bubbles: example

- Candidate solution: $z_{t}=\boldsymbol{\delta}^{\prime} X_{t}+\theta_{t}$ where $\theta=\beta E_{t}^{\Omega}\left[\theta_{t+1}\right]$
- A share, $\xi \in(0,1)$, of agents have ICK. The rest have full info:

$$
s_{i, t}^{\theta}=\left\{\begin{array}{lll}
\theta_{t}+e_{i, t} \quad \text { where } \quad e_{i, t} \sim N\left(0, \sigma_{e}^{2}\right) & \text { if } i \in[0, \xi) \\
\theta_{t} & \text { if } i \in[\xi, 1]
\end{array}\right.
$$

Rational bubbles: example

- Candidate solution: $z_{t}=\boldsymbol{\delta}^{\prime} X_{t}+\theta_{t}$ where $\theta=\beta E_{t}^{\Omega}\left[\theta_{t+1}\right]$
- A share, $\xi \in(0,1)$, of agents have ICK. The rest have full info:

$$
s_{i, t}^{\theta}=\left\{\begin{array}{lll}
\theta_{t}+e_{i, t} & \text { where } \quad e_{i, t} \sim N\left(0, \sigma_{e}^{2}\right) & \text { if } i \in[0, \xi) \\
\theta_{t} & \text { if } i \in[\xi, 1]
\end{array}\right.
$$

- Substitute the candidate into the equilibrium condition:

$$
\begin{aligned}
z_{t} & =\boldsymbol{\delta}^{\prime} X_{t}+\beta\left(\xi \bar{E}_{t}^{\theta}\left[\theta_{t+1}\right]+(1-\xi) E_{t}^{\Omega}\left[\theta_{t+1}\right]\right) \\
& =\boldsymbol{\delta}^{\prime} X_{t}+\theta_{t}+\xi\left(\bar{E}_{t}^{\theta}\left[\theta_{t}\right]-\theta_{t}\right)
\end{aligned}
$$

Rational bubbles: example

- Candidate solution: $z_{t}=\boldsymbol{\delta}^{\prime} X_{t}+\theta_{t}$ where $\theta=\beta E_{t}^{\Omega}\left[\theta_{t+1}\right]$
- A share, $\xi \in(0,1)$, of agents have ICK. The rest have full info:

$$
s_{i, t}^{\theta}=\left\{\begin{array}{lll}
\theta_{t}+e_{i, t} & \text { where } \quad e_{i, t} \sim N\left(0, \sigma_{e}^{2}\right) & \text { if } i \in[0, \xi) \\
\theta_{t} & \text { if } i \in[\xi, 1]
\end{array}\right.
$$

- Substitute the candidate into the equilibrium condition:

$$
\begin{aligned}
z_{t} & =\boldsymbol{\delta}^{\prime} X_{t}+\beta\left(\xi \bar{E}_{t}^{\theta}\left[\theta_{t+1}\right]+(1-\xi) E_{t}^{\Omega}\left[\theta_{t+1}\right]\right) \\
& =\boldsymbol{\delta}^{\prime} X_{t}+\theta_{t}+\xi\left(\bar{E}_{t}^{\theta}\left[\theta_{t}\right]-\theta_{t}\right)
\end{aligned}
$$

- Contradiction:
- Requires either $\xi=0$ or $\sigma_{e}=0$, both of which imply universal full information.

The end result

- When any positive mass of agents observe the state with any idiosyncratic noise, backward-looking solutions cannot exist.
- When any positive mass of agents observe bubbles with any idiosyncratic noise, rational bubbles cannot exist.

Intuition:

- Backward-looking solutions \& rational bubbles require co-ordination.
- Co-ordination requires common knowledge.
- With idiosyncratic noise, common knowledge is absent.

Model outline

- Start from the canonical three-equation NK model with Calvo pricing.
- Log-linearise around a zero inflation trend.
- The representative household and central bank have full information.
- Price-setting firms are subject to imperfect common knowledge.

The HH and the CB

Standard Euler equation and Taylor-type rule:

$$
\begin{aligned}
y_{t} & =E_{t}^{\Omega}\left[y_{t+1}\right]-\sigma\left(i_{t}-\left(E_{t}^{\Omega}\left[p_{t+1}\right]-p_{t}\right)-x_{t}\right) \\
i_{t} & =\phi_{y} y_{t}+\phi_{\pi}\left(p_{t}-p_{t-1}\right)
\end{aligned}
$$

- $E_{t}^{\Omega}[\cdot] \equiv E\left[\cdot \mid \Omega_{t}\right]$ is the expectation under full information.
- x_{t} is a household preference shock (the natural rate of interest)

$$
x_{t}=\rho x_{t-1}+u_{t} \quad u_{t} \sim N\left(0, \sigma_{u}^{2}\right)
$$

The Phillips Curve

- With Calvo pricing and dispersed information, the price level follows:

$$
p_{t}=\theta p_{t-1}+(1-\theta-\beta \theta) \bar{E}_{t}\left[p_{t}\right]+(\beta \theta) \bar{E}_{t}\left[p_{t+1}\right]+(1-\theta)(1-\beta \theta) \bar{E}_{t}\left[m c_{t}\right]
$$

The Phillips Curve

- With Calvo pricing and dispersed information, the price level follows:

$$
p_{t}=\theta p_{t-1}+(1-\theta-\beta \theta) \bar{E}_{t}\left[p_{t}\right]+(\beta \theta) \bar{E}_{t}\left[p_{t+1}\right]+(1-\theta)(1-\beta \theta) \bar{E}_{t}\left[m c_{t}\right]
$$

- The Incomplete Information NKPC:

$$
\begin{aligned}
\pi_{t}=(1-\theta) \bar{E}_{t}\left[\pi_{t}\right] & -(1-\theta)\left\{p_{t-1}-\bar{E}_{t}\left[p_{t-1}\right]\right\} \\
& +(\beta \theta) \bar{E}_{t}\left[\pi_{t+1}\right]+(1-\theta)(1-\beta \theta) \bar{E}_{t}\left[m c_{t}\right]
\end{aligned}
$$

The Phillips Curve

- With Calvo pricing and dispersed information, the price level follows:

$$
p_{t}=\theta p_{t-1}+(1-\theta-\beta \theta) \bar{E}_{t}\left[p_{t}\right]+(\beta \theta) \bar{E}_{t}\left[p_{t+1}\right]+(1-\theta)(1-\beta \theta) \bar{E}_{t}\left[m c_{t}\right]
$$

- The Incomplete Information NKPC:

$$
\begin{aligned}
\pi_{t}=(1-\theta) \bar{E}_{t}\left[\pi_{t}\right] & -(1-\theta)\left\{p_{t-1}-\bar{E}_{t}\left[p_{t-1}\right]\right\} \\
& +(\beta \theta) \bar{E}_{t}\left[\pi_{t+1}\right]+(1-\theta)(1-\beta \theta) \bar{E}_{t}\left[m c_{t}\right]
\end{aligned}
$$

- Under full information, this is the canonical NKPC:

$$
\pi_{t}=\beta E_{t}^{\Omega}\left[\pi_{t+1}\right]+\frac{(1-\theta)(1-\beta \theta)}{\theta} m c_{t}
$$

Information

- The underlying state is the what the state would be under full info:

$$
\boldsymbol{\eta}_{t} \equiv\left[\begin{array}{c}
x_{t} \\
p_{t-1}
\end{array}\right] \quad \begin{aligned}
& : \text { Today's demand shock } \\
& : \text { Yesterday's price level }
\end{aligned}
$$

- Firms have dispersed information:

$$
\begin{aligned}
\mathcal{I}_{i, t} & =\left\{\mathcal{I}_{i, t-1}, \boldsymbol{s}_{i, t}\right\} \\
\boldsymbol{s}_{i, t} & =\boldsymbol{\eta}_{t}+\boldsymbol{v}_{i, t} \quad \boldsymbol{v}_{i, t} \sim N\left(\mathbf{0}, \Sigma_{v}\right)
\end{aligned}
$$

- This nests full information as a limiting case:

$$
\boldsymbol{s}_{i, t}(i)=\left[\begin{array}{ll}
x_{t}+v_{t}^{x}(i) \\
p_{t-1}+v_{t}^{p}(i)
\end{array}\right] \xrightarrow{\Sigma_{v} \rightarrow 0} \text { Full information }
$$

Eigenvalues of the NK model with full information

- $\phi_{\pi}>\phi_{\pi}^{\text {Taylor. }}$ two eigenvalues outside the unit circle
- $\phi_{\pi}<\phi_{\pi}^{\text {Taylor }}$: only one eigenvalue outside the unit circle

The purely forward-looking solution under full info

Proposition 1

- The forward solution is found with forward substitution (Cho \& Moreno, 2011).
- With distinct eigenvalues, this is the minimal solvent (Rendahl, 2017).

$$
p_{t}=\lambda p_{t-1}+\gamma x_{t}
$$

Solving the NK model with ICK

The purely forward-looking solution under full information:

$$
p_{t}=\lambda p_{t-1}+\gamma x_{t}
$$

Proposition 2

- The unique solution under ICK (θ is the Calvo parameter):

$$
p_{t}=\theta p_{t-1}+(\lambda-\theta) \widetilde{p}_{t-1 \mid t}+\gamma \widetilde{x}_{\mid t}
$$

- $\widetilde{x}_{t \mid t}$ and $\widetilde{p}_{t-1 \mid t}$ are weighted averages of higher-order beliefs.
- As in the toy model, the Kalman filter means that these follow a vector $\operatorname{AR}(1)$.
- The solution under ICK equals the purely-forward solution under full information when $\sigma_{v}=0$ and approaches it smoothly as $\sigma_{v} \rightarrow 0$.

No need for B-K conditions \Rightarrow the Taylor principle is not necessary.

Impulse Responses

- The strong reaction of the nominal rate raises the real rate.

$$
i_{t}=0.1 y_{t}+0.5 \pi_{t}
$$

- As with price level targetting, future deflation raises the real rate.

Sargent \& Wallace (1975) is not robust to ICK

Determinacy remains under an interest rate peg ($\phi_{y}=\phi_{\pi}=0$):

- This is pegged at the steady-state interest rate.
- A different peg would be a change of steady state.

What determines nominal persistence?

$$
p_{t}=\theta p_{t-1}+(\lambda-\theta) \widetilde{p}_{t-1 \mid t}+\gamma \widetilde{x}_{t \mid t}
$$

Central bank design

- λ is increasing in both ϕ_{y} and ϕ_{π}.

Price flexibility

- λ is increasing in θ.

Unconditional volatility

- Two channels:

1. Var increases in λ and impact size
2. Standard damping argument

- $\phi_{\pi}<\phi_{\pi}^{\text {Taylor }} \Rightarrow 1^{\text {st }}$ effect dominates.
- $\phi_{\pi}>\phi_{\pi}^{\text {Taylor }} \Rightarrow$ Only $2^{\text {nd }}$ effect varies.

- Equivalent channels.
- But for $\phi_{\pi}<\phi_{\pi}^{\text {Taylor }}$, on-impact impulse gets much larger.

Other implications

No more liquidity trap?

Safe to raise the inflation target?

Conclusion

- The Taylor principle is not required in NK models with ICK.
- With ICK, there exists a unique solution to rational, forward-looking, linear models that does not rely on the Blanchard-Kahn conditions.
- Equilibrium "selection": no backward solns or bubbles, despite rationality.
- Policy can be calm: it doesn't need to intervene.
- I'm linearising around a full-info trend, though.
- \Rightarrow Implicitly assumes that long-run expectations are well anchored.
- When $\phi_{\pi}<\phi_{\pi}^{\text {Taylor }}$:
- The price level - not just inflation - is stationary.
- Inflation volatility falls, but output volatility remains high.

