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How do monetary policy and nominal stability work?

• A long literature on price level determinacy.

• Does nominal stability require an ‘active’ central bank?
• “Naïvely estimated” interest rate rules often violate the Taylor principle.

• Can we safely raise the inflation target?

• Is the liquidity trap real?

• Is neo-Fisherianism real?
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What I do

• Explore determinacy in models with Imperfect Common Knowledge.

• Apply this to the New Keynesian model in particular.

• Four sources of indeterminacy in DSGE models:
1. Multiple steady-state equilibria.
2. For each steady state, multiple purely-forward-looking solutions.
3. For each forward solution, multiple backward-looking solutions.
4. For each backward solution, multiple rational bubbles.

• Three ingredients to ICK:
• Agents are fully (Bayes) rational.
• Agents lack full information. Each observes idiosyncratically noisy signals.
• There is strategic interaction between agents.
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Key results under ICK

• The NK model solves uniquely, regardless of the Taylor principle.

• No backward-looking solutions or bubbles⇒ no need for Blanchard-Kahn.

• Standard results remain when the Taylor principle is satisfied.

• When φπ < φTaylor
π , the price level – not just inflation – is stationary.

• Persistence is a function of central bank design, increasing in both φπ and φy.

• A unique and stable solution exists under an interest rate peg.

• cf. Sargent & Wallace (1975).
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A toy model

A hidden state: xt = ρxt−1 + ut ut ∼ N
(
0, σ2

u

)
Agent i’s signal: si,t = xt + vi,t vi,t ∼ N

(
0, σ2

v

)

Agent i’s action: zi,t = Ei,t [xt] + βEi,t [zt+1] zt ≡
∫ 1

0
zi,t di

The average action: zt = Et [xt] + βEt [zt+1]
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Solving the baby model with full information

zt = xt + βEt [zt+1] xt = ρxt−1 + ut

The full set of solutions (following Blanchard, 1979):

zt = (1− ξt) z(F)
t + ξt z(B)

t + θt where z(F)
t =

∑∞
q=0 (βρ)q xt

ξt ∈ R z(B)
t = 1

β
(zt−1 − xt−1)

θt = βEt [θt+1]

The Blanchard-Kahn conditions:

A1: zt is stationary Assumption A2 makes both the backward solution
A2:

∣∣∣ 1
β

∣∣∣ > 1 and non-zero bubbles violate assumption A1.

⇒ Only zt = z(F)
t remains: ξt = θt = 0 ∀t
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Solving the model with dispersed info

zt = Et [xt] + βEt [zt+1] xt = ρxt−1 + ut si,t = xt + vi,t

• The Kalman filter ensures that the hierarchy of expectations is AR(1):

Xt ≡
[

xt

Et [Xt]

]
(∞×1)

= ΦXt−1 + Ψut

• Define S and T such that: SXt = xt

TXt = Et [Xt]

• The purely forward-looking solution is:

zt = ST (I − βΦT)−1 Xt
σv→0−−−→

(
1

1− βρ

)
xt
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Backward-looking solutions: example 1

zt = Et [xt] + βEt [zt+1] xt = ρxt−1 + ut si,t = xt + vi,t

Consider the equivalent to the purely backward solution under full info:

zt = 1
β

(
zt−1 − Et−1 [xt−1]

)
: Candidate solution

Step it forward and take the average expectation:

Et [zt+1] =
1
β

Et

[
zt − Et [xt]

]

Problems:
• Others’ actions are unknown: Et [zt] 6= zt

• The LIE breaks down: Et

[
Et [xt]

]
6= Et [xt]
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Backward-looking solutions: example 2

Consider zt = δ′Xt +φ zt−1

This requires, inter alia, Et [zt−1] = χ zt−1 where χ =
1
βφ2

But Et [zt−1] = Et−1 [zt−1] + ht

{
ρxt−1 + ut − Et−1 [xt]

}
︸ ︷︷ ︸

Average information obtained from agents’ signals

Contradiction:
• zt−1 cannot be a function of ut ⇒ ht = 0
• ρ > 0⇒ si,t is informative about Xt−1 and zt−1 ⇒ ht 6= 0
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Rational bubbles: example

• Candidate solution: zt = δ′Xt + θt where θ = βEΩ
t [θt+1]

• A share, ξ ∈ (0, 1), of agents have ICK. The rest have full info:

sθi,t =

{
θt + ei,t where ei,t ∼ N

(
0, σ2

e

)
if i ∈ [0, ξ)

θt if i ∈ [ξ, 1]

• Substitute the candidate into the equilibrium condition:

zt = δ′Xt + β
(
ξEθt [θt+1] + (1− ξ) EΩ

t [θt+1]
)

= δ′Xt + θt + ξ
(

Eθt [θt]− θt

)
• Contradiction:
• Requires either ξ = 0 or σe = 0, both of which imply universal full information.
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The end result

• When any positive mass of agents observe the state with any
idiosyncratic noise, backward-looking solutions cannot exist.

• When any positive mass of agents observe bubbles with any
idiosyncratic noise, rational bubbles cannot exist.

Intuition:
• Backward-looking solutions & rational bubbles require co-ordination.
• Co-ordination requires common knowledge.
• With idiosyncratic noise, common knowledge is absent.
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Model outline

• Start from the canonical three-equation NK model with Calvo pricing.

• Log-linearise around a zero inflation trend.

• The representative household and central bank have full information.

• Price-setting firms are subject to imperfect common knowledge.
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The HH and the CB

Standard Euler equation and Taylor-type rule:

yt = EΩ
t [yt+1]− σ

(
it −

(
EΩ

t [pt+1]− pt
)
− xt

)
it = φyyt + φπ (pt − pt−1)

• EΩ
t [·] ≡ E [·|Ωt] is the expectation under full information.

• xt is a household preference shock (the natural rate of interest)

xt = ρxt−1 + ut ut ∼ N
(
0, σ2

u

)
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The Phillips Curve

• With Calvo pricing and dispersed information, the price level follows:

pt = θpt−1 + (1− θ − βθ) Et [pt] + (βθ) Et [pt+1] + (1− θ) (1− βθ) Et [mct]

• The Incomplete Information NKPC:

πt = (1− θ) Et [πt]− (1− θ)
{

pt−1 − Et [pt−1]
}

+ (βθ) Et [πt+1] + (1− θ) (1− βθ) Et [mct]

• Under full information, this is the canonical NKPC:

πt = βEΩ
t [πt+1] +

(1− θ) (1− βθ)
θ

mct
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Information

• The underlying state is the what the state would be under full info:

ηt ≡
[

xt

pt−1

]
: Today’s demand shock

: Yesterday’s price level

• Firms have dispersed information:

Ii,t = {Ii,t−1, si,t}

si,t = ηt + vi,t vi,t ∼ N (0,Σv)

• This nests full information as a limiting case:

si,t (i) =

[
xt + vx

t (i)
pt−1 + vp

t (i)

]
Σv→ 0−−−−→ Full information
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Eigenvalues of the NK model with full information

0 0.5 1 1.5 2
0.0

0.5

1.0

1.5

2.0

• φπ > φTaylor
π : two eigenvalues outside the unit circle

• φπ < φTaylor
π : only one eigenvalue outside the unit circle
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The purely forward-looking solution under full info

Proposition 1
• The forward solution is found with forward substitution (Cho & Moreno, 2011).

• With distinct eigenvalues, this is the minimal solvent (Rendahl, 2017).

0 0.5 1 1.5 2
0.0

0.5

1.0

1.5

2.0

pt = λ pt−1 + γ xt
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Solving the NK model with ICK

The purely forward-looking solution under full information:

pt = λpt−1 + γxt

Proposition 2
• The unique solution under ICK (θ is the Calvo parameter):

pt = θpt−1 + (λ− θ) p̃t−1|t + γ x̃t|t

• x̃t|t and p̃t−1|t are weighted averages of higher-order beliefs.

• As in the toy model, the Kalman filter means that these follow a vector AR(1).

• The solution under ICK equals the purely-forward solution under full
information when σv = 0 and approaches it smoothly as σv → 0.

No need for B-K conditions⇒ the Taylor principle is not necessary.



Introduction A toy model NK with ICK Solving the model Implications Conclusion

Impulse Responses

it = 0.1 yt + 1.5 πt

0 2 4 6 8 10 12 14 16 18 20 22 24
-0.5

0.0

1.0

2.0

3.0

4.0

5.0

• The strong reaction of the nominal
rate raises the real rate.

it = 0.1 yt + 0.5 πt
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• As with price level targetting, future
deflation raises the real rate.
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Sargent & Wallace (1975) is not robust to ICK

Determinacy remains under an interest rate peg (φy = φπ = 0):

0 2 4 6 8 10 12 14 16 18 20 22 24
-0.5

0.0

1.0

2.0

3.0

4.0

5.0

• This is pegged at the steady-state interest rate.

• A different peg would be a change of steady state.
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What determines nominal persistence?

pt = θpt−1 + (λ− θ) p̃t−1|t + γ x̃t|t

Central bank design
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• λ is increasing in both φy and φπ.

Price flexibility
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• λ is increasing in θ.
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Unconditional volatility

Inflation

0 0.5 1 1.5 2
0.0

0.4

0.8

1.2

• Two channels:
1. Var increases in λ and impact size
2. Standard damping argument
• φπ < φTaylor

π ⇒ 1st effect dominates.
• φπ > φTaylor

π ⇒ Only 2nd effect varies.

Output
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• Equivalent channels.
• But for φπ < φTaylor

π , on-impact
impulse gets much larger.
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Other implications

No more liquidity trap?

1

1

Safe to raise the inflation target?
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Conclusion

• The Taylor principle is not required in NK models with ICK.

• With ICK, there exists a unique solution to rational, forward-looking, linear
models that does not rely on the Blanchard-Kahn conditions.

• Equilibrium “selection”: no backward solns or bubbles, despite rationality.

• Policy can be calm: it doesn’t need to intervene.

• I’m linearising around a full-info trend, though.

• ⇒ Implicitly assumes that long-run expectations are well anchored.

• When φπ < φTaylor
π :

• The price level – not just inflation – is stationary.

• Inflation volatility falls, but output volatility remains high.
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