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Abstract

Determinacy is ensured in the New Keynesian model when firms face imperfect
common knowledge, regardless of whether the Taylor principle is satisfied. Strategic
complementarity in pricing and idiosyncratic noise in firms’ signals, however small,
are together sufficient to eliminate backward-looking solutions and rational bubbles
without appealing to the assumptions of Blanchard and Kahn (1980). Standard
solutions emerge when the Taylor principle is followed, but when it is not, the price
level – and not just inflation – is stationary. Indeed, a unique and stable solution
emerges when the interest rate is pegged to its steady-state value (contra Sargent
and Wallace, 1975) or when the trend rate of inflation is increased (contra Ascari
and Sbordone, 2014).
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1 Introduction

A long literature has studied the question of price level determinacy, dating to the rise of
the rational expectations paradigm,1 with Sargent and Wallace’s (1975) demonstration
of indeterminacy in a model with rational expectations under an interest rate peg. It
is now widely accepted that when monetary policy is set via interest rates, determinacy
and stability rely critically on the Taylor principle: that when inflation rises, the nominal
interest rate should be raised sufficiently – usually by more than one-for-one – to ensure
that the real interest rate will rise, thus damping demand and lowering inflation. Form-
ally, when a New Keynesian (NK) model is closed with an interest rate rule and solved
with the assumptions introduced by Blanchard and Kahn (1980), a lower bound emerges
on the central bank’s marginal response to inflation for the solution to be unique.2 Ab-
sent the Taylor principle, the textbook model admits the possibility of sunspot shocks to
select between solutions, thereby adding to the volatility of the economy.

By contrast, this paper argues that it is not strictly necessary for a central bank to
respond to temporary deviations of the economy from its long run trend: that the poli-
cymaker’s response can be calm, instead of forceful, without threatening the stability of
the economy. This is not to suggest that policy ought not respond, or that if it does it
will be ineffective. The model below adopts the basic NK framework, with policy operat-
ing through the same channels, and with equal effect. Nevertheless, this paper’s results
partially confound such discussion by demonstrating the determinacy of (deviations from
trend in) the price level when arbitrarily small amounts of noise are introduced into firms’
information sets, regardless of the strength of the central bank’s response to inflation.3

The subdued responsiveness of interest rates in the post-crisis era, combined with
the relative stability of inflation over the same period, poses a puzzle for the NK model.
Although it is possible that central banks’ asset purchases substituted for changes in
short-term interest rates, the efficacy of such ‘quantitative easing’ (QE) is far from cer-
tain.4 Furthermore, even accepting that unconventional policy can successfully substitute
for conventional policy, it seems plausible that the combined effect of the two did not
satisfy the Taylor principle in the post-crisis period (table 1 reports estimated Taylor
rules in the pre- and post-crisis periods, using a shadow rate to account for the effect of
unconventional policy in the latter).

1The broader question of what determines an economy’s price level is clearly far older, dating (at
least) to Hume’s (1748) advocacy of the quantity theory of money.

2The Blanchard-Kahn conditions are not without challenge. For example, Cochrane (2011) critiques
their use in solving the NK model, arguing inter alia that the Taylor principle cannot be ex ante credible,
as it is designed to produce explosive inflation in the event of off-equilibrium behaviour and policymakers
would retain ex post options for bringing inflation back in check.

3The model I present is linearised around a deterministic trend, implying an assumption that long-run
inflation expectations remain anchored throughout.

4See, for example, Eggertsson and Woodford (2003), Cúrdia and Woodford (2011) or Reis (2016).
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Period OLS GMM Std. dev.
φπ φy ρ φπ φy ρ of inflation

1979:3 – 2008:2 2.09 1.45 0.88 2.52 0.83 0.83 2.07
(0.45) (0.67) (0.04) (0.63) (0.38) (0.04)

2008:3 – 2015:4 -0.07 0.20 0.83 -2.39 0.53 0.87 0.86
(0.55) (0.40) (0.08) (2.96) (1.10) (0.14)

Note: The estimated rule is rt = ρ rt−1 + (1− ρ) (r + φππt + φyyt) + εt, where rt is
the effective federal funds rate, or the shadow rate of Wu and Xia (2016) in the post-
crisis period; πt is the annualised quarterly change in the GDP deflator; and yt is the
CBO-implied output gap. Robust standard errors are reported in parentheses. Follow-
ing Clarida, Galí and Gertler (2000), for the GMM estimation lags of the interest rate,
inflation, output gap, commodity price inflation, money growth and the spread between
10-year and 3-month US treasuries are used as instruments. See appendix A for detail.

Table 1: Estimated Taylor rules

Inspired by the near-constant interest rates and persistently below-target inflation
rates seen in the post-crisis era, a number of authors have proposed a ‘neo-Fisherian’
view of inflation. In this framework, when the interest rate is pegged below its original
steady state value forever, inflation does not explode but, instead, falls to accommodate
the change.5 In one formalisation, Cochrane (2017) has highlighted a ‘backward stable’
solution to the NK model when the Blanchard-Kahn conditions are not met. A number
of authors have responded to Cochrane’s proposal but, prior to this paper, none have
been able to reject his chosen solution while retaining rational expectations.6

Extending the textbook three-equation NK model7 to impose Imperfect Common
Knowledge (ICK) on firms – each rationally combining idiosyncratically noisy signals
of the underlying state of the economy while facing strategic complementarity in their
price-setting – I establish the following results:

1. Uniqueness. So long as firms never discover past values of the price level with
certainty, backward-looking solutions and extrinsic bubbles are eliminated without
appealing to the conditions of Blanchard and Kahn (1980).

2. Standard results remain. The solution is a pertubation from the purely-forward
solution under full information. It nests the canonical solution when the Taylor
principle is satisfied and firms’ noise is taken towards zero.

3. Interest rate peg. In partial contrast to the results of Sargent and Wallace (1975),
a unique and stable solution exists when the nominal interest rate remains pegged

5The proposal rests on the Fisher relation, which emerges from an Euler equation when at trend. It
is therefore closely related to the ‘liquidity trap’ of Benhabib, Schmitt-Grohe and Uribe (2001).

6In particular, García-Schmidt and Woodford (2015) propose a model with iterative, but incomplete,
revisions of beliefs each period; Gabaix (2016) describes a model in which agents pay reduced attention
to specific variables when forecasting; and Evans and McGough (2018) examine the learnability of
Cochrane’s ‘backward stable’ solution versus the ‘minimum state variable’ solution.

7See, for example, Woodford (2003a) or Galí (2008).
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at its steady-state level.8

4. Stationary prices. When the central bank declines to satisfy the Taylor principle,
the price level – and not just inflation – is stationary around its trend path, with
policymaker-determined persistence. This ensures that the real interest rate always
rises following a positive demand shock, regardless of the central bank’s response.9

5. Trend inflation. A unique solution still emerges in the presence of positive trend
inflation, regardless of the level of that trend or the coefficients of the central bank’s
decision rule.

6. Inflation and output volatility. The unconditional volatility of inflation peaks at the
Taylor threshold, falling as the central bank’s marginal response to inflation moves
in either direction. In contrast, output volatility is generally larger in a ‘passive’
monetary regime and falls only when in an ‘active’ regime.10

7. Avoiding a liquidity trap. When the central bank declines to satisfy the Taylor prin-
ciple, there exists a single, globally stable, steady-state equilibrium. The liquidity
trap emphasised by Benhabib, Schmitt-Grohe and Uribe (2001, 2002) is therefore
avoided, even when a lower bound on interest rates is respected.

In short, without common knowledge, firms are unable to co-ordinate on past states
of the economy. Since backward-looking solutions are functions of past states by defini-
tion, they become ineligible in a setting with ICK (similar arguments apply to rational
bubbles). The purely forward-looking solution, if one exists, is therefore automatically
unique regardless of the parameters that underlie the eigenvalues of the system.

One possible interpretation of this result is that ICK represents an equilibrium selec-
tion device in an otherwise full-information model by positing an epsilon of idiosyncratic
noise in firms’ information sets – sufficiently small as to not affect the dynamics of the
model, but still positive so as to ensure uniqueness without appealing to the Blanchard-
Kahn conditions. In addition to rejecting the ‘backward stable’ solution of Cochrane
(2017), this paper therefore also poses challenges to empirical studies that rely on the
possibility of sunspot shocks in a model with rational expectations, such as Lubik and
Schorfheide (2004) or Ascari, Bonomolo and Lopes (2016).

Solution uniqueness in (static) models when agents have heterogeneous information
and a continuous choice set is well established,11 but its implications for equilibrium
selection in DSGE models do not appear to have been widely appreciated. Hellwig

8When pegged away from its original steady state, whether the nominal economy explodes or con-
forms depends on whether agents change their view of trend inflation.

9The real interest falls on impact under an interest rate peg, but subsequently rises above, and
remains above, trend thereafter, with the integral over time being positive.

10I use the terminology of Leeper (1991).
11See, for example, Morris and Shin (1998).
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and Veldkamp (2009), for example, emphasise that the ‘sticky information’ models of
Mankiw and Reis (2002) and Reis (2006)12 feature unique solutions, but do not explore
the implications for parameter regions that do not satisfy the Blanchard-Kahn conditions.

Methodologically, this paper adds to the ICK literature by deriving an exact finite-
state representation that accommodates both dynamic elements in agents’ decision rules
and endogenous signals. By contrast, earlier work has either (i) approximated the solution
by granting agents full knowledge of the state with a T -period lag (e.g. Lorenzoni, 2009)
or by truncating the hierarchy of beliefs (e.g. Nimark, 2017); or (ii) produced a finite-state
representation only when agents face a sequence of static problems with exogenous signals
(e.g. Woodford, 2003b). More recently, Huo and Takayama (2016) have demonstrated
a finite-state representation in models with dynamic choices when agents’ signals are
exogenous and proven the impossibility of a finite representation when agents observe
contemporaneous endogenous signals. The method used here is arguably simpler than
that of Huo and Takayama (2016) and successfully includes endogenous signals by having
them be observed with a lag.

Related literature. This is by no means the first paper to apply ICK to the study
of monetary business cycles,13 but to my knowledge it is the first to examine the implic-
ations for determinacy. Woodford (2003b) first introduced Townsend’s (1983) hierarchy
of expectations to a nominal economy, using a reduced-form expression for demand and
demonstrating sluggish aggregate behaviour following a shock to nominal spending, des-
pite price flexibility. Nimark (2008) extends Woodford’s approach to include a standard
demand side to the economy, but grants firms perfect knowledge of the previous period’s
price level. This maintains the possibility of indeterminacy and so requires approaches
like the Taylor principle to address it. Melosi (2014) estimates a similar model for the
US economy. More recently, Kohlhas (2014) has re-explored the ‘anti-disclosure’ result
of Morris and Shin (2005), while Angeletos and Lian (2016b) have demonstrated that
the absence of perfect common knowledge can address the forward guidance ‘puzzle’ of
Del Negro, Giannoni and Patterson (2016). Adam (2007) and Angeletos and La’O (2017)
study optimal policy in the presence of ICK among firms.

It may also help to be clear on what the model of this paper is not. The content
and precision of firms’ signals are set here as a modelling choice, rather than chosen
endogenously by the firms themselves. I therefore avoid the complexity of strategic
information acquisition, as in Sims (2003), Mackowiak and Wiederholt (2009) or Hellwig,
Kohls and Veldkamp (2012). All of the firms’ signals are assumed to include some degree
of idiosyncratic noise, so there are no purely public signals of the sort examined by Morris

12Wherein agents occasionally discover the true state of the economy, but otherwise acquire no new
information from period to period.

13Angeletos and Lian (2016a) provide a recent overview of models of incomplete information, including
imperfect common knowledge.
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and Shin (2002) and the literature that followed. The strategy space of firms – their
(relative) price – is also continuous rather than countable, thus avoiding the correlated
equilibria of Aumann (1987) or the ‘private sunspot’ concept of Angeletos (2008). Finally,
the indeterminacy obtained in the models of Lubik and Matthes (2016) and Mertens,
Matthes and Lubik (2017) is avoided here because multiple agents (individual firms)
have non-nestable information sets, thus giving rise to a hierarchy of expectations.

Paper structure. The rest of the paper is arranged as follows. Section 2 first
illustrates the achievement of determinacy with ICK in a toy model. Section 3 then
presents the basic NK model under ICK, before section 4 presents the solution under
both full information and ICK. Section 5 presents a variety of implications that follow,
conditional on the model, and section 6 extends the basic model to add positive trend
inflation. Finally, section 7 discusses the implications for steady-state equilibria and the
possibility of liquidity traps before section 8 concludes.

2 A toy model

To help illustrate the core concepts of the paper, before turning to the New Keynesian
model I first examine determinacy in the smallest possible dynamic model with rational
expectations and imperfect common knowledge. In it, a continuum of agents, indexed
j ∈ [0, 1], have individual decision rules given by:

zt (j) = Et(j)[xt] + βEt(j)[zt+1] (1)

where zt ≡
∫ 1

0 zt (j) dj is their average action; Et(j)[·] ≡ E [·|It (j)] is the Bayes-rational
expectation of agent j, subject to their information set in period t; and xt is an unob-
served, exogenous driving process:

xt = ρxt−1 + ut where ρ ∈ (0, 1) and ut ∼ N
(
0, σ2

u

)
(2)

Taking the average of (1) gives the equilibrium condition of the model:

zt = Et [xt] + βEt [zt+1] (3)

where Et [·] ≡ ∫ 1
0 Et(j)[·] dj is the average expectation of individual agents. Each period,

agents observe signals of xt that are unbiased but idiosyncratically noisy, so that their
information sets evolve as:

It (j) = {It−1 (j) , st (j)} (4)

st (j) = xt + vt (j) where vt (j) i.i.d.∼ N
(
0, σ2

v

)
(5)

Agents’ noise shocks, vt (j), are perfectly transitory and independent of both each other
and the underlying state (xt).
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2.1 Solving the toy model under full information

Agents have full information when σv = 0. In that case, equation (3) simplifies to:

zt = xt + βEΩ
t [zt+1] (6)

where EΩ
t [·] ≡ E [·|Ωt] and Ωt is the set of all information in existence in period t. The

model of (2) and (6) is widely known to feature an infinite number of solutions. In
particular, following the notation of Blanchard (1979), there exists: (i) a purely forward-
looking solution obtained by substituting (6) forward:

z
(F )
t =

( ∞∑
s=0

(βρ)s
)
xt (7a)

(ii) a purely backward-looking solution obtained by supposing perfect foresight in (6):

z
(B)
t = 1

β
(zt−1 − xt−1) ; and (7b)

(iii) a rational bubble as any process that satisfies (6) with the fundamental removed:

θt = βEΩ
t [θt+1] (7c)

All told, the full set of solutions is given by:

zt = ξtz
(B)
t + (1− ξt) z(F )

t + θt where ξt ∈ R (7d)

The elements ξt and θt are referred to as sunspot shocks – processes extrinsic to the model
which nevertheless feature in the solution.14 Without further assumptions to pin down
the paths for ξt and θt, the model is therefore indeterminate. When a unique solution is
required,15 the usual approach is to adopt the conditions of Blanchard and Kahn (1980):

A1: The solution must be stationary.

A2:
∣∣∣ 1
β

∣∣∣ > 1

where assumption A2 is a parameter restriction designed to ensure that the purely
backward-looking solution and the rational bubble are both explosive.16 It is easy to see
that the set of solutions (7d) can then only satisfy both A1 and A2 when ξt = θt = 0∀t,
so that the solution simplifies to:

zt =
( ∞∑
s=0

(βρ)s
)
xt =

(
1

1− βρ

)
xt (8)

where the second equality requires that |βρ| < 1. If this is not satisfied, the purely
forward-looking solution does not exist.

14Although appreciation of indeterminacy came earlier, the idea of interpretting ξt and θt as stochastic
processes that influence the real economy dates to Cass and Shell (1983).

15For a recent example of a model that embraces the multiplicity of solutions, see Ascari, Bonomolo
and Lopes (2016), who use sunspot shocks to explain the volatility of inflation in the pre-Volcker era.

16If zt was a vector and β a matrix, the condition would be that β−1 have eigenvalues outside the
unit circle for each forward-looking variable in zt.
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2.2 Solving the toy model under imperfect common knowledge

When agents’ signals contain idiosyncratic noise, the law of iterated expectations breaks
down (Et

[
Et [xt]

]
6= Et [xt]) and it becomes necessary to consider the hierarchy of their

average expectations. We may compactly define this hierarchy recursively as:

Xt ≡

 xt

Et [Xt]

 (9)

which is an infinite-dimension vector.17 I refer to Xt as the full state of the model to
distinguish it from the underlying state, xt. It is helpful, too, to define S and T as the
selection matrices such that SXt = xt and TXt = Et [Xt]. A solution is then a reduced-
form expression for zt as a function of Xt, potentially with lags, and a law of motion for
Xt that describes agents’ average belief formation. As before, I first consider the purely
forward-looking solution and then consider the possibility of backward-looking solutions.

Proposition 1. For the simple model under universally dispersed information,

a) the purely forward-looking solution exists (is finite) when βρ < 1 and has the form

zt = γ ′Xt where γ ′ = ST (I − βFT )−1 (10a)

Xt = FXt−1 +Gut (10b)

b) the forward solution under idiosyncratic noise (10) nests the forward solution under
full information (7a) when σ2

v = 0 and approaches it smoothly as σ2
v → 0.

Proof. See appendix B. �

Since xt is autoregressive of order 1, individual agents’ Bayes-optimal estimator re-
garding it is a Kalman filter. Given the recursive nature of the Kalman filter, xt and
Et [xt] therefore jointly follow a vector AR(1) process. A Kalman filter is thus also op-
timal for estimating Et [xt], and so on up the hierarchy, giving the vector AR(1) process
for Xt in the solution. In the appendix I show that the matrices F and G are given by:

F = ρ



1 0 0 0 · · ·
k1 (1− k1) 0 0 · · ·
k2 (k1 − k2) (1− k1) 0 · · ·
k3 (k2 − k3) (k1 − k2) (1− k1)
...

...
...

. . .


G =



1
k1

k2

k3
...


(11)

where kq is the Kalman gain used to form agents’ qth-order expectation regarding xt.
17An equivalent, but more notationally complex definition of the full state is Xt ≡[

x
(0)
t|t x

(1)
t|t x

(2)
t|t · · ·

]′
, where the 0th-order expectation of a variable is the variable itself; the 1st-order

expectation is agents’ average expectation of the variable; the 2nd-order expectation is agents’ average
expectation about the 1st-order expectation; and so on: x(0)

t|t ≡ xt and x
(q)
t|t ≡ Et

[
x

(q−1)
t|t

]
∀q ≥ 1.
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2.2.1 Rejecting rational bubbles

With the purely forward-looking solution established, I now turn to consider various
possible sunspots. One possibility, excluded in the above because of the the tightly
specified signal vector, is that of a rational bubble:

zt = γ ′Xt + θt (12a)

θt = βEΩ
t [θt+1] (12b)

where θt is independent of us for all s, t. This solution clearly cannot be rejected if θt is
perfectly observed by all agents, even if signals of xt are universally observed with noise:

st (i) =
xt + vt (i)

θt

 ∀i (13)

In that case, backward-looking solutions would be eliminated, as described in section
2.2.2 below, but the rational bubble would remain. Instead, I consider a situation where
some fraction of agents, φ ∈ (0, 1), observe the candidate bubble with idiosyncratic noise:

st (i) =



xt + vt (i)
θt + et (i)

 where et (i) i.i.d.∼ N (0, σ2
e) if i ∈ [0, φ)xt + vt (i)

θt

 if i ∈ [φ, 1]
(14)

The idiosyncratic noise et (i) is assumed to be orthogonal to xs, θs and vs (j) ∀i, j, s, t. In
this case, with common knowledge removed, it follows that the bubble term is eliminated:

Proposition 2. For the toy model under imperfect common knowledge with agents’ sig-
nals given by (14), rational bubbles are eliminated if φ > 0 and σe > 0.

Proof. Substituting the candidate solution (12a) into the equilibrium condition (3) yields:

zt = γ ′Xt + β
(
φE

θ
t [θt+1] + (1− φ)EΩ

t [θt+1]
)

(15)

where Eθ
t [·] is the average expectation of agents that are imperfectly informed about θ.

Making use of (12b) and the fact that Eθ
t [·] = E

θ
t

[
EΩ
t [·]

]
then gives:

zt = γ ′Xt + θt + φ
{
E
θ
t [θt]− θt

}
(16)

But, by comparison to (12a), this then requires that either φ = 0 or that σe = 0 (so
that Eθ

t [θt] = θt), either of which would imply a contradiction. More generally, consider
candidate solutions of the entire hierarchy of agents’ expectations about the bubble:

zt = γ ′Xt + a′Θt where Θt ≡

 θt

Et [Θt]

 (17)
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In a linear model, Θt will follow an AR(1) process:

Θt = QΘt−1 +Rεt (18)

where εt is the innovation driving θt, while Q and R are matrices of parameters based
on agents’ filtering with equivalent structures to F and G (B.7b). In particular, Q will
be lower triangular and have eigenvalues less than or equal to 1/β (see the derivation of
F in the appendix). Substituting this into the equilibrium condition (3) then produces
a requirement that:

a′ (I − βQT ) = 0 (19)

If all agents had full information, this would be equivalent to a′ (I − βQ) = 0 since all
the elements of Θt would be identical. With Q having an eigenvalue of 1/β, the term
(I − βQ) would be singular and there would be an infinite number of possible values for
a. With some agents not observing the bubble perfectly, however, (I − βQT ) is invertible
(its rows are linearly independent), implying that a = 0. �

This demonstrates that the existence of a bubble is a knife-edged result. It is rejected
whenever a positive measure of agents, no matter how small, have idiosyncratic noise in
their signals of the bubble, no matter how small. Importantly, the correlated equilib-
rium concept of Aumann (1987) (for a more recent application of a similar concept, see
Angeletos, 2008) does not apply in this context because the strategy space for zt (i) is
continuous on the real line rather than discrete, and so uncountable.

2.2.2 Rejecting backward-looking solutions

I next consider the possibility of backward-looking solutions – that is, alternatives to
(10a) that feature additional weight on past fundamentals. To begin, it is helpful to
first consider as a candidate the ICK equivalent of the purely-backward looking solution
under full information:

zt = 1
β

(
zt−1 − Et−1 [xt−1]

)
(20)

where xt−1 has been replaced with Et−1 [xt−1]. Stepping this candidate solution forward
by one period and taking the average period-t expectation gives:

Et [zt+1] = 1
β
Et

[
zt − Et [xt]

]
(21)

When agents share a common information set, as they do under full information,18

they know the average action perfectly (Et [zt] = zt) and the law of iterated expectations
18Strictly, this only requires that agents’ information sets be common – they could still be incomplete

with a single, shared signal about xt. See, for example, by Currie, Levine and Pearlman (1986) or Levine
et al. (2012).
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applies (Et

[
Et [xt]

]
= Et [xt]) so that this would then recover the equilibrium condition

of the model. With imperfect common knowledge, however, neither of these apply, so
that (20) is rejected as a specific candidate solution.

More generally, though, it is necessary to consider all possible solutions as linear
functions of any current or past values of ut:

zt = α (L)ut = ∑∞
s=0αsut−s (22)

This necessarily includes past values of zt and any average expectation, of any order
and formed at any time, about any variable in the past. For the proof, however, I consider
solutions as functions of (lags of) Xt:

zt = δ (L)Xt = ∑∞
s=0 δsXt−s (23)

This is admisible because (i) ut = xt − ρxt−1; (ii) xt is nested within Xt; and (iii) we
are not here envisioning any change in agents’ signals, so the law of motion for Xt (10b)
will be invariant to the solution (23). As such, for any given set of δ coefficients, the
corresponding α coefficients in (22) can be recovered and vice versa.

Proposition 3. For the toy model, backward-looking solutions are rejected — that is,
candidate solutions of the form of (23) all imply that δq = 0 ∀q ≥ 1 and δ0 = γ —
without recourse to the Blanchard-Kahn conditions.

Proof. Stepping the candidate solution forward, taking the period-t expectation and sub-
stituting it into the equilibrium condition (3) gives:

zt = (S + β (δ′0F + δ′1))Et [Xt] + βδ′2Et [Xt−1] + βδ′3Et [Xt−2] + · · · (24)

Under full information, there would be no expectation operators around the Xt, Xt−1,
etc., which would imply that δq = 1

β
δq−1 ∀q ≥ 1, with indeterminacy for δ0. With incom-

plete information, however, we must evaluate the expectations as functions of current and
past states. Given its definition, the period-t expectation about Xt is nested within Xt

itself: Et [Xt] = TXt. For expectations about earlier state vectors, the optimal average
Kalman smoother must update each period as:

Et [Xt−q] = Et−1 [Xt−q] +mq

{
SXt − SFEt−1 [Xt−1]

}
(25)

wheremq is the gain applied to period-t signals when updating beliefs about Xt−q. Note
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that mq → 0 as σv → 0. Substituting (25) for each q into (24) and gathering terms:

zt =


ST + δ′0 {βFT}

+ δ′1 {βT}
+ δ′2 {βm1S}
+ · · ·

Xt +


δ′2Φ1

+δ′3Φ2

+δ′4Φ3

+ · · ·

Xt−1 +


δ′3Φ1

+δ′4Φ2

+δ′5Φ3

+ · · ·

Xt−2 + · · · (26a)

where Φ1 ≡ β ( T −m1SFT ) (26b)

Φ2 ≡ β (m1S −m2SFT ) (26c)

Φ3 ≡ β (m2S −m3SFT ) (26d)
...

Comparing (26a) to (23), it then follows that:

δ′q =
∞∑
i=1
δ′q+iΦi ∀q ≥ 1 (27)

Given the symmetry of this requirement, it must be the case that δ1 = δ2 = δ3 = · · ·
(to see this, ignore q = 1 and relabel γ1 = δ2,γ2 = δ3, etc; the recursive conditions
for γ1,γ2, · · · are identical to those for δ1, δ2, · · · , so the solutions must be the same).
Imposing this then gives:

δ′q

(
I −

∞∑
i=1

Φi

)
= 0 ∀q ≥ 1 (28)

Evaluating the sum and after expanding F (B.7b), I arrive at:

∞∑
i=1

Φi = β
(
T +

[
0∞×1 ρ (∑∞i=1mi) 0∞×∞

])
(29)

It is then straightforward to confirm that (I −∑∞i=1 Φi) is non-singular (its rows are
linearly independent). Hence, by (28), it follows that δq = 0 ∀q ≥ 1. Substituting this
into (26a) then gives δ′0 = ST (I − βFT )−1 = γ ′. �

The key to understanding this result is that dispersed information removes the possib-
ility of common knowledge. Since backward-looking solutions require co-ordination, and
co-ordination requires common knowledge, the presence of dispersed information removes
the possibility of backward-looking solutions.

For example, consider a candidate solution of the form zt = δ′Xt + φEt [zt−1]. When
plugged into the equilibrium condition (3), this creates a term in Et

[
Et [zt−1]

]
that

must correspond to Et [zt−1]. If agents shared common knowledge, the law of iterated
expectations would apply so that the second-order expectation collapses to the first-order.
But without common knowledge, the two cannot be equal and the solution cannot hold.
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Critically, since dispersed information (σv > 0) removes the very possibility of backward-
looking solutions, the problem Blanchard and Kahn (1980) set out to solve is removed.
Provided that the forward solution exists (βρ < 1), no further parameter restrictions are
required for uniqueness.

2.3 A comment

The toy model has a number of simplifications from a more general DSGE with imperfect
common knowledge. In addition to being univariate, the equilibrium condition does not
feature any lags of the endogenous variable (zt−1) and agents’ signals are exogenous,
based only on xt rather than (lags of) zt. In the New Keynesian model considered below,
all three of these are relaxed.

Implementing the solution in proposition 1 is also non-trivial. With an infinite state
vector (Xt) it need not, in general, be possible to calculate the solution exactly and an
approximation may need to be taken. For example, Nimark (2017) demonstrates that
under quite general conditions an arbitrarily accurate approximation may be obtained
simply by truncating the number of higher-order expectations at a pre-chosen cutoff k∗.

In static settings with exogenous signals, past literature has been able to re-write the
exact solution as a function of a weighted average of higher-order expectations rather
than of the complete hierarchy.19 In the solution below, I demonstrate that this is also
possible in a dynamic setting provided that endogenous signals are observed with a lag.

3 The NK model with zero trend inflation

I now move on to the New Keynesian model, starting from the canonical three equation
variant of Galí (2008), extended only to deny full information to price-setting firms. It
is cashless, and features Ricardian equivalence and lump sum taxes to eliminate any
influence of fiscal policy. There is a continuum of firms, indexed j ∈ [0, 1], that supply
differentiated goods to a representative household, who values them via a Dixit-Stiglitz
aggregator. The household provides labour to the firms in a competitive labour market.
There is no capital. Firms are subject to Calvo-Yun pricing and information frictions,
while the household and the central bank each possess full information. All agents are
fully rational and trend inflation is taken to be zero. A derivation is provided in appendix
C.

Combined with market clearing, the household’s Euler equation is:

19See, for example, Woodford (2003b), Angeletos and La’O (2013) or Melosi (2014).

13 / 38



yt = EΩ
t [yt+1]− σ

(
it −

(
EΩ
t [pt+1]− pt

)
− xt

)
(30)

xt = ρxt−1 + ut (31)

where yt is output; pt is the aggregate price level; it is the nominal interest rate; σ is the
elasticity of intertemporal substitution; xt is a persistent demand shock (with ρ ∈ (0, 1)
and ut ∼ N (0, σ2

u)), implemented here as a shock to the natural rate of interest; and
EΩ
t [·] = E [·|Ωt] is the mathematical expectation conditional on all period-t information.

The central bank makes use of a contemporaneous Taylor rule:

it = φyyt + φπ (pt − pt−1) (32)

Individual firms have an independent probability, θ, of not being able to update their
price in each period, so that the aggregate price level evolves as:

pt = θpt−1 + (1− θ) qt (33)

where qt ≡
∫ 1

0 qt(j)dj is the average reset price in period t. Firms’ individual reset prices
are given by their expectations of the optimal reset price:

qt(j) = Et(j)[q∗t ] (34)

q∗t = (1− βθ) (pt + ωyt) + (βθ)EΩ
t

[
q∗t+1

]
(35)

where β is the household discount factor, ω is a function of the various elasticities of
intertemporal substitution, demand, labour supply and marginal cost (so that ωyt is real
marginal cost); and Et(j)[·] ≡ E [·|It (j)] is firm j’s (rational) expectation based on an
incomplete information set: It (j) ⊂ Ωt. I show in the appendix that these together
imply the following expression for the price level:

pt = θpt−1 + (1− θ (1 + β))Et [pt] + (βθ)Et [pt+1] + (1− θ) (1− βθ)ωEt [yt] (36)

where Et [·] ≡ ∫ 1
0 Et(j)[·] dj is the average firm expectation. For reference, note that this

may be readily rearranged (using πt ≡ pt − pt−1) to give:

πt = (1− θ)Et [πt] + (1− θ)
{
Et [pt−1]− pt−1

}
+ (1− θ) (1− βθ)ωEt [yt]

+ (βθ)Et [πt+1] (37)

which is the Incomplete Information New Keynesian Phillips Curve, first presented by
Nimark (2008), although generalised here to allow for uncertainty about the previous
period’s price-level. It should be clear that with full information, period-t-dated ex-
pectations become accurate and the term in

{
Et [pt−1]− pt−1

}
drops out, leading to the

canonical full information NKPC :

πt = κyt + βEΩ
t [πt+1] where κ = (1− θ) (1− βθ)

θ
ω (38)
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3.1 Firms’ information

Firms retain complete information about the trend path for the economy, but have only
incomplete and heterogeneous access to information about its deviations from that trend.
Each period, each firm (regardless of whether they are free to adjust their price) observes
a set of signals about the aggregate economy and uses these to update their beliefs.
Note from equations (34)-(35) that there is strategic complementarity in firms’ decision-
making, so that each of them will care about not only the real marginal cost they will
individually face but also the decisions (and, hence, beliefs) of all other firms.

As may already be clear, and will in any case be shown below, the underlying state
of the economy includes the exogenous driving process and the lagged price level: ηt ≡[
xt pt−1

]′
. I therefore assume that each firm’s information set evolves as:

st (j) = ηt + vt (j) where vt (j) ∼ N
(
0, σ2

v I2
)

(39a)

It (j) = {It−1 (j) , st (j)} (39b)

The vector st (j) is firm j’s set of signals in period t. The idiosyncratic noise, which I
assume to be transitory, may be thought of as firms’ failure to directly observe a public
signal or a misinterpretation of the same (perhaps instead getting only an impression from
newspaper coverage); an error of judgement; or as the imperfect applicability of national
public signals to the aggregation level most relevant to each firm (e.g. at an industry or
sector level). Idiosyncratic noise shocks are independent from aggregate shocks and each
other, so that Cov (ut,vs (j)) = 0 ∀ j, s, t and Cov (vs (i) ,vt (j)) = 0 ∀i, j, s, t.

Note, in particular, that firms do not observe the past price level perfectly. This as-
sumption will prove to be critical in ensuring uniqueness below, but given the constantly-
evolving nature of official estimates of economic data, it seems to be quite a weak as-
sumption.20 It bears emphasising, too, that uniqueness will only require the presence of
any amount of idiosyncratic noise, no matter how small.

This signal structure has the benefit of nesting full information as a special case by
setting σ2

v = 0, but other information assumptions could be made. Common noise shocks
could be added to capture the effect of measurement errors by national statistical agencies
or ‘animal spirits’.21,22 Alternatively, the signal regarding the natural rate of interest could
be replaced with a similarly noisy signal about the previous period’s aggregate output

20For example, the BEA conducts both an annual revision of US data, typically focusing on the
preceding three years, and a ‘comprehensive revision’ of data every five years, in which all time periods
of published data can be altered (Kornfeld et al., 2008). The comprehensive review conducted in 2013,
for example, included changes to national accounts dating to 1929 (McCulla, Holdren and Smith, 2013).

21The main uniqueness result of the paper would still require that all signals include some (arbitrarily
small) measure of idiosyncratic noise.

22A second way of capturing movements in sentiments, as described by Angeletos and La’O (2013),
would be to grant firms noisy signals about other firms’ signals. In either scenario, these would then be
added, alongside the natural rate of interest, to the list of states that firms would need to estimate.
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(e.g. each firm’s own lagged marginal cost). This might arguably be a more plausible
description of information actually used by firms in their pricing decision, but would no
longer nest the case of full information. In the language of Baxter, Graham and Wright
(2011), the model would then be only asymptotically invertible when σv = 0, rather
than instantly invertible (the solution derived below would still apply when σv > 0).23

Regardless, the uniqueness results will go through so long as all signals observed by firms
include at least some idiosyncratic noise, in order to avoid common knowledge.

4 Solving the model

4.1 The purely forward-looking solution with full information

Before solving the model under ICK, I first solve it under full information. I also solve it in
terms of the price level instead of inflation, as is more common. Defining δ ≡ 1/(1+σφy),
imposing full information on the price-level (36) and combining it with (30) and (32),
the model may be written compactly as:

A0ζt = A1E
Ω
t [ζt+1] +B1ζt−1 + C0xt (40)

where ζt =
[
pt yt

]′
and A0, A1, B1 and C0 are matrices of parameters.24 The standard

approach to solving models like (40) is to stack the variables and to rearrange it so that
the forecast variables are on the left-hand side:25,26EΩ

t [ζt+1]
ζt

 =
A−1

1 A0 −A−1
1 B1

I 0


︸ ︷︷ ︸

D

 ζt
ζt−1

+
−A−1

1 C0

0

xt (41)

It is straightforward to show that, in this instance, D has four distinct eigenvalues:

λ ∈

0, 1, β + δ + κσδ

2βδ ±

√
(β + δ + κσδ)2 − 4βδ (1 + κσδφπ)

2βδ

 (42)

These are plotted below in figure 1.27 Note, in particular, that β+δ+κσδ
2βδ > 1 and that the

lower of the two quadratic solutions crosses λ = 1 when φπ = 1 −
(

1−β
κ

)
φy (the Taylor

23Another possibility could be common (but incomplete) information, in which all agents observe the
same signal (sharing the same noise) – a setting explored, for example, by Levine et al. (2012). This adds
additional dynamics to the model, as past noise shocks would affect current behaviour, but it would not
address the question of determinacy. An equivalent multiplicity of solutions still emerges and the same
equilibrium-selection assumptions are necessary as in the full information case.

24A0 =
[
θ (1 + β) −κθ
σ (φπ + 1) 1

δ

]
, A1 =

[
βθ 0
σ 1

]
, B1 =

[
θ 0
σφπ 0

]
and C0 =

[
0
σ

]
.

25The shock xt may also be added to the stacked variables so that the driving process is i.i.d., but
this would simply add ρ to the list of eigenvalues of D.

26If A1 were not invertible, the generalized Schur form could be used, as per Klein (2000).
27The quadratic roots are complex when φπ >

(
(1+β+κσ)2−4β

4βκσ

)
−
(

1−β−κσ
2κ

)
φy +

(
βσ
4κ

)
φ2
y.
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threshold). When φπ is above the Taylor threshold, the number of eigenvalues outside the
unit circle matches the number of forecast variables, thus ensuring that backward-looking
solutions will be explosive and the Blanchard-Kahn order condition is satisfied.

0 0.5 1 1.5 2
0.0

0.5

1.0

1.5

2.0

Note: The chart plots eigenvalues (λ) of the basic NK model when solved under full
information as a function of the central bank’s marginal response to inflation (φπ). The
dashed line represents the real component of two complex solutions. Structural paramet-
ers are {β, φy, σ, κ} =

{
0.994, 0.5

4 , 1, 0.5
}
.

Figure 1: Eigenvalues of the New Keynesian model

To find the purely forward-looking solution, equation (40) can be substituted forward
(see Cho and Moreno, 2011). Since the eigenvalues of the system are distinct, this is
guaranteed to converge to the solution with the smallest eigenvalues in absolute value
(see Rendahl, 2017).28

Proposition 4. The purely forward-looking solution to the price level in (31) and (40)
under full information is:

pt = λ pt−1 + γ xt (43a)

where

λ = min

1, β + δ + κσδ

2βδ −

√√√√(β + δ + κσδ

2βδ

)2

−
(

1 + κσδφπ
βδ

) (43b)

γ = κσδ

(1− δρ) (1 + κσ + β (1− ρ− λ))− κσ (1−δ)(1−δφπ)
(1−δλ)

(43c)

Proof. See appendix D.29 �

When φπ > 1 −
(

1−β
κ

)
φy, the full information, purely forward-looking solution to

the New Keynesian model has a unit root in prices. In this case, the more usual way
28McCallum (2007) refers to this as the ‘MOD solution’, meaning minimum-in-modulus.
29Correspondingly, yt =

(
σ(φπ−(1+φπ)λ+λ2)

1+σφy−λ

)
pt−1 +

(
ωγ+σ(1−γ(1+φπ−λ−ρ))

1+σφy−ρ

)
xt. Note that the solu-

tion does not feature lagged demand (yt−1) because it is not present in the Euler equation (as it would
be if consumption habits were included, for example). This is also the reason for the eigenvalue of zero.
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of writing the solution is in terms of inflation: πt = γxt. When φπ is below the Taylor
threshold, however, the purely forward-looking solution features a stationary price level.

Lest readers be concerned with this stationarity, it bears noting that when xt is
sufficiently persistent, only this solution will produce a finite solution to γ.

Corollary 1. A solution for λ other than that specified in (43b) would be economically
plausible, in the sense that γ is positive and finite so that a positive demand shock raises
prices, only when φπ ∈

(
φπ, φπ

)
, where φπ = 1 − (1− ρ)

(
1 + 1−βρ

σκ

)
−
(

1−βρ
κ

)
φy and

φπ = 1 + σφy. Furthermore, this interval vanishes as φy → 0 and ρ → 1, with both φπ
and φπ converging to 1.

This point is illustrated in figure 2. Note that the region φπ < φπ with λ = 1 is the
non-convergence region highlighted by Cho and McCallum (2015).

0 0.5 1 1.5 2
0.0

0.5

1.0

1.5

2.0

pt = λpt−1 + γxt

Note: The left-hand chart plots the solution coefficient λ (in red) against the eigenvalues
of the system, with the grey shaded region covering values of λ for which γ would not
be positive and finite: that is, such that a positive demand shock would fail to induce
higher prices. The lower threshold is φ = 1− (1− ρ)

(
1 + 1−βρ

σκ

)
−
(

1−βρ
κ

)
φy, while the

higher threshold is φ = 1 + σφy. The right-hand chart plots the solutions for γ that
would emerge if λ and φπ were both free parameters. Parameters are {β, φy, σ, κ, ρ} ={

0.994, 0.5
4 , 1, 0.5, 0.8

}
.

Figure 2: Economic plausibility of the New Keynesian model

4.2 The purely forward-looking solution under ICK

With firms making use of heterogeneous information sets, it becomes necessary to con-
sider the infinite hierarchy of their (average) expectations (Xt ≡

[
η′t Et [Xt]′

]′
, where

ηt ≡
[
xt pt−1

]′
). Even when a solution can be mathematically described in terms of

an infinite state vector, of course, it is not generally possible to calculate that solution.
Instead, the solution may need to be estimated with a finite state that approximates the
true, infinite state. In the case of ICK, Nimark (2017) shows that, under general condi-
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tions, an arbitrarily accurate approximation may be found by truncating the hierarchy
of expectations (this approach was first used in Nimark, 2008).

Until recently, the literature has generally held that when agents are forward-looking
and observe endogenous signals (both of which apply in the NK model), a solution could
only be expressed in terms of Xt. However, Huo and Takayama (2016) have demon-
strated that an exact finite-state representation must exist, provided that agents do not
observe endogenous signals contemporaneously. I show here that an exact finite-state
representation may still be found when the endogenous signals are observed with a lag.

Let the 0th-order expectation of a variable be the variable itself; the 1st-order expecta-
tion be firms’ average expectation about the variable; the 2nd-order expectation be firms’
average expectation about the 1st-order expectation, and so on. Further, let η̃t|t be a
geometrically-weighted average of firms’ higher-order expectations regarding ηt:

η̃t|t ≡ (1− ϕ)
∞∑
k=1

ϕk−1η
(k)
t|t where η

(k)
t|t ≡

 ηt if k = 0
Et

[
η

(k−1)
t|t

]
if k ≥ 1

(44)

for some ϕ ∈ (−1, 1). The parameter ϕ is the equilibrium degree of strategic complement-
arity in firms’ price-setting, taking account of demand and the entire expected future
path of prices.

With this definition in place, I am able to present the solution under ICK. The state of
the economy follows a vector AR(1) process, inherited from the process for the exogenous
shock and the recursive nature of the Kalman filter, while the price level is a function
of the lagged price level (due to price stickiness) and weighted-average beliefs about the
lagged price level and the current natural interest rate.

Proposition 5. For the New Keynesian model with prices set under imperfect common
knowledge, the state of the economy is given by:

Zt ≡

 ηt
η̃t|t

 =
[
xt pt−1 x̃t|t p̃t−1|t

]′
(45a)

and the purely forward-looking solution is of the form:

Zt = AZt−1 +But (45b)

pt = θ pt−1 + (λ− θ) p̃t−1|t + γ x̃t|t (45c)

Furthermore, (45) equals the corresponding solution under full information (43) when
σ2
v = 0 and approaches it smoothly as σ2

v → 0.

Proof. See appendix E. �
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4.3 Uniqueness

Proposition 5 established the purely forward-looking solution under imperfect common
knowledge, but it remains to demonstrate that ICK sufficies to rule out backward-looking
solutions and rational bubbles – that is, to eliminate the possibility of sunspots. To begin,
recall from equation (40) that under full information, the model may be written as:

A0ζt = A1E
Ω
t [ζt+1] +B1ζt−1 + C0xt (46)

where ζt ≡
[
pt yt

]′
. The purely forward-looking solution will be of the form:

ζ
(F )
t = Λζt−1 + Γxt (47a)

and the purely backward-looking solution is obtained by removing the expectation oper-
ator from EΩ

t [ζt+1] and rearranging:

ζ
(B)
t = A−1

1 A0ζt−1 − A−1
1 B1ζt−2 − A−1

1 C0xt−1 (47b)

Furthermore, rational bubbles in this instance are any stochastic process, εt, that is
orthogonal to xt and satisfies equation (46) with the exogenous term (xt) removed:

A0εt = A1E
Ω
t [εt+1] +B1εt−1 (47c)

Following Blanchard (1979), the full set of solutions to (46) is then given by:

ζt = (1− ξt) ζ(F )
t + ξtζ

(B)
t + εt where ξ ∈ R (47d)

The elements ξt and εt are both referred to as sunspot shocks – terms extrinsic to the
model that nevertheless enter into the (full set of) solution(s).30 The eigenvalue condition
of Blanchard and Kahn (1980) then serves to ensure that ζ(B)

t and εt are explosive. When
combined with a further condition that the solution be stationary, the only admissible
solution remaining has ξt = 0 and εt = 0∀t – that is, the purely forward-looking solution.

By contrast, when agents in the model face imperfect common knowledge, the purely
backward-looking solution and the rational bubble simply do not exist, so any parameter
restrictions that would render them explosive are therefore irrelevant. I address each
type of sunspot in turn.

4.3.1 Rational bubbles

The rejection of rational bubbles proceeds equivalently to that for the toy model of
section 2. For a rational bubble to feature in the solution, it must be perfectly observed
by everybody.31

30For an example of a model that focuses on ξ as a sunspot, see Ascari, Bonomolo and Lopes (2016).
For an example of a model that focuses on εt, see Flood and Garber (1980).

31Strictly, with a finite number of agents/firms, rejection of bubbles would require that at least two
agents observe them with idiosyncratic noise in order to produce a hierarchy of expectations.
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Proposition 6. If price-setting firms in the NK model face imperfect common knowledge
and any positive measure of firms, no matter how small, observes a candidate bubble εt
with any amount of idiosyncratic noise, no matter how small, then εt cannot feature in
a rational solution to the model.

Proof. See appendix F.1. �

4.3.2 Backward-looking solutions

Key to understanding the elimination of backward-looking solutions is the fact that
such solutions require co-ordination between firms and co-ordination requires common
knowledge. So long as firms’ signals contain any amount of idiosyncratic noise, they
can never perfectly agree on past values of state variables, so that co-ordination is not
possible and backward-looking solutions are eliminated.

To help illustrate this point, before presenting the proposition in full I sketch a rejec-
tion of one specific candidate solution:

pt = d′pZt + µpt−1 (48)

This represents candidate solutions in which additional (if µ > 0) weight is given to
the lagged price level. Substituting this candidate into the equilibrium conditions of the
model will produce an extra term in Et [pt−1] and, ultimately, a requirement that:

Et [pt−1] = χ pt−1 (49)

for some coefficient χ, which must hold for (48) to be valid. But (49) is inconsistent with
rational expectations. To see this, consider an individual firm’s filter regarding pt−1:

Et(j)[pt−1] = Et−1(j)[pt−1] +Kt

{
st (j)− Et−1(j)[st (j)]

}
(50)

for some projection matrix Kt. Taking the average of this and splitting out the two
signals gives:

Et [pt−1] = Et−1 [pt−1] + ρKx,t

{
xt−1 − Et−1 [xt−1]

}
+Kx,t ut

+ Kp,t

{
pt−1 − Et−1 [pt−1]

}
(51)

Since ut is unforecastable, pt−1 cannot be a function of it. A necessary condition for (49)
to hold is therefore that Kx,t = 0. But since shocks are persistent (ρ > 0), this can only
hold if (i) signals provide no information about the state (σv =∞) or (ii) signals provide
full information about the state (σv = 0).

Rejecting all backward-looking solutions
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The full set of solutions featuring only the underlying fundamental (that is, those
that exclude rational bubbles) must be expressible as:

ζt = a (L)ut (52)

This captures any linear function of any current or past values of ut. It therefore
necessarily includes past values of ζt and any average expectation, of any order and
formed at any time, about any variable in the past. For the proof, however, I instead
look for a solution in terms of:

Yt ≡

 ηt

Et [Yt]

 where ηt ≡
[
xt ζ ′t−1 . . . xt−H ζ ′t−H−1

]′
(53a)

Yt = FYt−1 +Gut (53b)pt
yt


︸ ︷︷ ︸
ζt

=
d′p
d′y


︸ ︷︷ ︸
D

Yt (53c)

and letH →∞. Since ut = xt−ρxt−1, it should be clear that (52) and (53) are equivalent:
for a given set of D coefficients, the corresponding a coefficients can be recovered and
vice versa. To begin, I partition D (53c) as follows:

D =
[
D

(0)
x,0 D

(0)
ζ,0 · · · D

(0)
x,H D

(0)
ζ,H D

(1)
x,0 D

(1)
ζ,0 · · · D

(1)
x,H D

(1)
ζ,H · · ·

]
︸ ︷︷ ︸

Sub-block (0)
︸ ︷︷ ︸

Sub-block (1)

(54)

where D(k)
x,s and D

(k)
ζ,s are the solution coefficients against the kth-order expectations about

xt−s and ζt−s−1 respectively. Since the model has one exogenous variable (xt) and two
endogenous variables (pt, yt), each sub-block of D is of size (2× 3 (1 +H)).

With this specification, it follows that a backward-looking solution must have either
D(k)
x,s 6= 0 or D(k)

ζ,s 6= 0 (or both) for some s ≥ 1. That is, some non-zero weight must be
placed on lags greater than those in the equilibrium conditions of the model. Similarly,
the purely forward-looking solution will only have non-zero elements in D(k)

x,0 and D(k)
ζ,0 .

Proposition 7. If price-setting firms in the NK model face imperfect common knowledge,
all backward-looking solutions are rejected — that is, D(k)

x,s = 0 and D(k)
p,s = 0 for all k ≥ 0

and s ≥ 1 — regardless of the coefficients of the central bank’s decision rule.

Proof. See appendix F.2. �

5 Some implications

The ability to identify a unique solution to an otherwise-standard New Keynesian model
when the central bank does not satisfy the Taylor principle has a variety of implications for
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how the model may be interpreted. I explore some of the most striking here, emphasising
in advance that all are conditional on the model at hand, including the assumed common
knowledge trend in prices.

It bears noting, first, that the unique solution under ICK is simply a pertubation from
the purely forward-looking solution under full information. Indeed, since the solution
under ICK approaches the forward solution under full information smoothly as firms’
idiosyncratic noise goes to zero, the full-information forward solution may be used as a
benchmark when considering the model’s dynamics. In this respect, the addition of ICK
may be thought of as an equilibrium selection device among full information solutions.

5.1 Impulse responses

As a point of context for the corollaries listed below, figure 3 first provides impulse
responses for the price level, output and the ex ante real interest rate following a positive
shock to demand for different central bank designs and different levels of idiosyncratic
noise. The left-hand panels plot those under near-full information, with σ2

v = 10−15, while
the right-hand panels plot those under idiosyncratically noisy information, with σ2

v = 1.

The top row implements a standard Taylor-type rule, with φπ = 1.5 and φy = 0.1. The
top-left panel therefore reproduces the results of the textbook New Keynesian model. The
top-right panel plots responses when firms’ signals have material amounts of idiosyncratic
noise.32 Even under the optimal signal extraction process, firms’ beliefs are slow to update
and prices consequently deviate by less than they do under full information. The reduced
price response subsequently induces a larger response in output.

The middle row depicts the unique solutions (again, under near-full and dispersed
information) when the central bank’s marginal response to inflation is more subdued, at
only 0.5 instead of 1.5. Since this coefficient is below the Taylor threshold, the aggregate
price level itself becomes stationary, with inflation initially rising above trend and then
falling below trend. The weaker price effect induces a larger movement in output on
impact, but the sustained period of below-trend inflation later causes a small contrac-
tion. Despite the central bank’s decision rule, the real interest rate remains above trend
throughout because of the contribution of the period of below-trend inflation.

The bottom two panels show the unique solutions when the central bank does not
respond to the state of the economy at all, instead keeping the nominal interest rate
pegged at its steady-state level. The price response is both smaller and less persistent,
causing the response of output to be substantially larger again. With no movement in
the nominal interest rate, the real rate initially falls as the household anticipates the
early above-trend inflation. Once the price level peaks and inflation falls below trend,
however, the real interest rate rises, and remains, above trend thereafter.

32It is therefore similar to Nimark (2008), albeit without firms having perfect sight of lagged prices.
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(a) Standard Taylor rule (φπ = 1.5 and φy = 0.1): λ = 1.00 γ = 0.85
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(b) Subdued rule (φπ = 0.5 and φy = 0.1): λ = 0.84 γ = 1.09
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(c) State-invariant rule (φπ = 0 and φy = 0): λ = 0.70 γ = 1.03

Note: The charts plot impulse response functions (IRFs) for the price level, output and the
ex ante real interest rate following a positive shock to demand, when solutions for the price
level under full information are: pt = λpt−1 + γxt. The left-hand panels impose near-full
information (σ2

v = 10−15), while in the right-hand panels firms’ signals are subject to idio-
syncratic noise (σ2

v = 1). Other parameters are {β, σ, θ, ω, ρ} = {0.994, 1, 2/3, 0.994, 0.8}.

Figure 3: Impulse responses following a demand shock

5.2 Central bank design determines price level persistence

Corollary 2. When the central bank chooses to satisfy the Taylor principle, the price
level exhibits a unit root. When the central bank declines to satisfy the Taylor principle,
the price level is stationary, with persistence strictly increasing in the coefficients of the

24 / 38



central bank’s decision rule:

∂λ

∂φπ
= κσδ

(
(β + δ + κσδ)2 − 4βδ (1 + κσδφπ)

)− 1
2 > 0 (55a)

∂λ

∂φy
= 1

2σ
(

1 + δ (2− β)
(
(β + δ + κσδ)2 − 4βδ (1 + κσδφπ)

)− 1
2
)
> 0 (55b)

Figure 4 plots λ as a function of φπ while varying φy. The positive slope when below
the Taylor threshold may be understood by considering the Euler equation and monetary
policy rule together. Increasing φπ lowers the weight that firms place on beliefs about
current prices, but increases the coefficient on beliefs about the lagged price level.
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Note: The chart plots the intrinsic persistence of the price level (λ) as a function of
the central bank’s marginal response to inflation (φπ) for various values of φy. Other
parameters are {β, σ, κ, θ} = {0.994, 1, 0.5, 2/3}.

Figure 4: Persistence of the price level, varying φy and φπ

When the central bank does not satisfy the Taylor principle, the persistence of the
price level (λ) is also increasing in φy. Inspection of equation (E.28) in the appendix helps
to explain this result. Firms’ strategic complementarity in equilibrium is increasing in φy.
Without full information, firms therefore limit their initial response to a shock, waiting
until they gain more confidence that other firms are updating their prices too.

5.3 An interest rate peg

Corollary 3. Provided that σv > 0, a unique and stable solution exists when the nominal
interest rate remains pegged at its steady-state value (φy = φπ = 0), with the following
corresponding full-information coefficients:

λpeg =
(β + 1 + κσ)−

√
(β + 1 + κσ)2 − 4β
2β

θ→0−−→ 0 (56a)

γpeg =
(

1
1− ρ

)(
κσ

1 + β (1− ρ− λ) + κσ

)
θ→0−−→ 1

1− ρ (56b)
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This result stands in contrast to the indeterminacy result of Sargent and Wallace
(1975), although it bears emphasising that the peg here is restricted to the steady-state
level of the interest rate.

Note that under flexible prices (θ = 0), these become simply λ = 0 and γ = 1
1−ρ .

This makes sense, as with an interest rate peg (it = 0) the household’s Euler equation
(30) becomes: yt = Et [yt+1] + σ {Et [pt+1]− pt + xt}. If firms had full information (and
sunspots could be ignored), expected inflation would then adjust to offset xt, keeping the
term in braces equal to zero so that output never deviates from trend.

5.4 Price stickiness and aggregate price level persistence

Corollary 4. When the central bank declines to satisfy the Taylor principle, the intrinsic
persistence of the price level is strictly increasing in the stickiness of individual prices:

∂λ

∂θ
= σδ (κ+ ω (1 + β)) (λ− φπ)

θ
(
(β + δ + κσδ)2− 4βδ (1 + κσδφπ)

) 1
2
> 0 (57)

Figure 5 highlights a curious oddity that has long applied to the canonical solution
to the New Keynesian model. When the central bank satisfies the Taylor principle, so
that λ = 1, changing the stickiness of firms’ prices (θ) does not alter the persistence of
the model following a shock, only the magnitude of its effect. By contrast, when the
central bank does not satisfy the Taylor principle, increasing θ does instead achieve the
intuitively anticipated result of increasing the model’s endogenous persistence.
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Note: The chart plots the intrinsic persistence of the price level (λ) as a function of the
central bank’s marginal response to inflation (φπ) for various values of price stickiness
(θ). Other parameters are {β, σ, κ, φy} = {0.994, 1, 0.5, 0.1}.

Figure 5: Persistence of the price level, varying θ and φπ

5.5 The real interest rate still responds

It is commonly suggested that the purpose of the Taylor principle is to ensure that the
real interest rate moves in the same direction as prices (inflation). However, this is not
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necessary when the price level is stationary. Following a demand shock that initially
raises prices, the period of below-trend inflation that occurs to bring the price level back
to trend will also raise the real interest rate, even if the nominal rate remains fixed.

Corollary 5. Suppose that φy = 0. Then under full information:

(i) the ex ante real interest rate is given by:

rt = (1 + φπ − ρ− λ) γ xt + (1− λ) (λ− φπ) pt−1 (58a)

(ii) the impulse response function (IRF) of the real interest rate is given by:

∂rt+s
∂ut

= γ

(
(1 + φπ − ρ− λ) ρs + (1− λ) (λ− φπ)

(λ− ρ) (λs − ρs)
)

; and (58b)

(iii) the sum of all current and future IRF values is given by:

Ξr ≡
∞∑
s=0

∂rt+s
∂ut

=

 γ > 0 if φπ ≤ 1
γ
(
φπ−ρ
1−ρ

)
> 0 if φπ > 1

(58c)

When the Taylor principle is satisfied, the impulse response simplifies to ∂rt+s
∂ut

=
γ (φπ − ρ) ρs, which is always positive. When the Taylor principle is not satisfied, the
real rate will be negative on impact if 1 + φπ − ρ− λ < 0 – that is, if the initial move in
the nominal interest rate is unsufficient to offset the initial increase in prices. Even then,
however, it eventually turns positive and the absolute sum of later periods exceeds that
of early periods so that the total effect is positive.

As firms’ signal noise increases, the sum over time of real interest rates falls (since more
sluggish expectations imply smaller inflation deviations), but it remains strictly positive.
Figure 6 illustrates this point, plotting Ξr for various values of φπ as the amount of
idiosyncratic noise varies. Although not shown, setting φy > 0 raises Ξr in all cases.

5.6 ‘Passive’ monetary policy can still deliver stable inflation

Corollary 6. With only demand shocks, the unconditional variance of inflation is:

Var (πt) = 2γ2
(

1− λ
1− λ2

)(
1− ρ

1− ρλ

)
Var (xt) (59)

under full information and strictly falls as σv rises.

Varying φπ, the unconditional variance of inflation (59) peaks at the Taylor threshold.
When φπ > φTaylor

π , inflation volatility is decreasing in φπ, as is well understood in the
literature. In this case, λ = 1 so that (59) simplifies to Var (πt) = γ2 Var (xt). An increase
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Note: The chart plots the sum of all current and future deviations of the real interest rate
from trend caused by a positive demand shock (Ξr ≡

∑∞
s=0

∂rt+s
∂ut

) as a function of the level
of idiosyncratic noise faced by price-setting firms (σ2

v/σ
2
u) for various values of the central

bank’s marginal response to inflation (φπ). Other parameters are {β, φy, σ, θ, ω, ρ} =
{0.994, 0.1, 1, 2/3, 0.994, 0.8}.

Figure 6: The total effect of a demand shock on the real interest rate

in φπ dampens the response of aggregate demand to shocks, thus lowering γ and, with
it, inflation volatility.

When φπ < φTaylor
π , however, there are two effects at play. First, the usual damping

effect on demand applies, just as for values of φπ > φTaylor
π . In addition to this, increasing

φπ also increases the persistence of the price level (λ). For all plausible calibrations, this
second effect dominates, causing volatility to rise with φπ. Above the Taylor threshold,
λ no longer varies with φπ so that the damping effect begins to dominate.
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Note: The chart plots the unconditional variance of deviations of inflation from trend as
a function of the central bank’s marginal response to inflation (φπ) for various amounts
of idiosyncratic noise in firms’ signals (σ2

v/σ
2
u). Other parameters are {φy, β, σ, θ, ω, ρ} =

{0.1, 0.994, 1, 2/3, 0.994, 0.8}.

Figure 7: Unconditional volatility in inflation

Figure 7 illustrates this point, plotting the unconditional variance of inflation as a
function of φπ while holding φy = 0.1. Increasing the amount of noise in firms’ signals dir-
ectly lowers inflation volatility as this causes their beliefs to update more slowly, leading
to smaller price changes in each period.
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Curiously, this peaked result for inflation volatility does not flow through to output
volatility. Figure 8 plots the equivalent chart for the variance of output. When φπ is above
the Taylor threshold, output volatility is decreasing in φπ through the same dampening
mechanism as for inflation. When φπ is below the Taylor threshold, however, output
volatility remains high regardless of the value of φπ.
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Note: The chart plots the unconditional variance of deviations of output from trend as
a function of the central bank’s marginal response to inflation (φπ) for various amounts
of idiosyncratic noise in firms’ signals (σ2

v/σ
2
u). Other parameters are {φy, β, σ, θ, ω, ρ} =

{0.1, 0.994, 1, 2/3, 0.994, 0.8}.

Figure 8: Unconditional volatility in output

This comes from the innovation being a demand shock in a New Keyensian model,
and may be understood by comparing the IRFs under a weak policy rule and an interest
rate peg in figure 3. Following such a shock, adjustment must take place through either
output or prices. When φπ is very low, price movements are small and so the on-impact
output movement is large. As φπ is increased, the price response becomes larger and
the on-impact output response correspondingly smaller. Against this, output returns to
trend more quickly when φπ is very low, despite the larger initial movement. Since the
persistence in the demand deviation increases alongside its decrease initial response and
the usual damping effect as φπ rises, overall volatility remains largely unchanged.

6 Extension to a model with positive trend inflation

Several authors have noted33 that the conditions for determinacy change in the presence
of positive trend inflation and that, in particular, the determinacy region for parameters
in a Taylor-type rule shrinks as trend inflation increases. This result, illustrated in figure
9, underlies one of the main criticisms of post-crisis proposals to raise inflation targets in
order to reduce the probability of interest rates being restricted by their lower bounds.34

33See, for example, Ascari and Ropele (2009), Coibion and Gorodnichenko (2011) and Ascari and
Sbordone (2014).

34For examples of arguments in favour of raising inflation targets, see Ball (2014) or Krugman (2014).
For examples of criticisms of this proposal based, in part, on indeterminacy or the volatility that would
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709Ascari and Sbordone: The Macroeconomics of Trend Inflation

the inflation rate becomes less sensitive to 
current economic conditions (the short-run 
GNKPC flattens); hence, monetary policy 
should respond more strongly to inflation to 
induce a reduction in output that achieves a 
given change in inflation.

Simulating the determinacy region for 
the benchmark calibration of the model 
(see footnote 36) yields the results shown in 
figure 11. In the baseline GNK model, the 
determinacy region shrinks very rapidly with 
trend inflation, requiring a weaker policy 
response to output and a stronger response 
to inflation to guarantee determinacy as 
trend inflation increases. The x in figure 11 

marks the classical values of the Taylor rule 
parameters, i.e., ​ϕ​π​ = 1.5 and ​ϕ​Y​ = 0.5/4, as 
in Taylor (1993). These values would result 
in an indeterminate REE for trend inflation 
greater than 4 percent.54

54 For trend inflation at the high values of 6 and 8 per-
cent, a small region of instability also appears above the 
indeterminacy region. For our calibration, this region is 
extremely small for 6 percent and gets bigger as trend infla-
tion increases. However, these values for trend inflation are 
out of the range of the estimates in figure 3. Thus, figure 11 
plots only the determinacy regions of the parameter space 
so as to focus the discussion on determinacy and to put all 
the cases in a single figure. 
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Figure 11. The Determinancy Region and Trend InflationNote: The chart, which is reproduced from Ascari and Sbordone (2014), plots parameter
regions of the central bank’s decision rule that produce determinacy for different values
of annual trend inflation in the New Keynesian model when solved under full informa-
tion. The x marks the point where φπ = 1.5 and φy = 0.5/4. Other parameters are
{α, β, σ, ψ, ε, θ} = {0, 0.99, 1, 1, 10, 0.75}.

Figure 9: Determinacy in the NK model with trend inflation under full information

A key extension of the previous section is then to illustrate that this concern with
determinacy in a model with full information is not robust to the introduction of inform-
ation frictions on the part of price setters. In the appendix I provide a derivation of
the basic New Keynesian model extended to include both non-zero trend inflation and
imperfect common knowledge among firms. The log-linearised system emerges as:

xt = ρxt−1 + ut (60a)

yt = EΩ
t [yt+1]− σ

(
it − EΩ

t [pt+1] + pt − xt
)

(60b)

it = φπ (pt − pt−1) + φyyt (60c)

pt = θΠε−1
pt−1 +

(
1− θΠε−1)( 1− α

1− α + αε

)
Et [ψt − φt] (60d)

ψt =
(

1− βθΠ
ε

1−α

)(
(1 + ω) yt + 1

ψ
st + ε

1− αpt
)

+ βθΠ
ε

1−α
(
ψt+1 − σ (yt+1 − yt)

)
(60e)

φt =
(
1− βθΠε−1) (yt + (ε− 1) pt) + βθΠε−1 (

φt+1 − σ (yt+1 − yt)
)

(60f)

st =
(
θΠ

ε
1−α

)
st−1 +

(
ε

1− α

)(
θ

1− θΠε−1

)(
Π

ε
1−α − Πε−1

) (
pt − pt−1

)
(60g)

where xt is a persistent demand shock, pt is the price level; yt is aggregate demand
(and output); it is the nominal interest rate; ψt is the average present discounted value
of future marginal cost; φt is the same for future marginal revenue; and st is the level
of price dispersion across firms. Among the parameters, α parameterises the curvature
of the production function (in labour only); β is the household discount factor; σ is the
EIS; ψ is the Frish elasticity of labour supply; ε is the elasticity of substitution between
ensue with sunspot shocks, see Bernanke (2010) or Ascari, Florio and Gobbi (2017).
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differentiated goods; θ is the (Calvo) probability of a firm not updating its price in a
given period; φπ and φy are the usual parameters of the central bank’s decision rule; and
ω = 1

σ
− 1 +

(
1

1−α

) (
1 + 1

ψ

)
. Finally, Π is the gross, quarterly trend rate of inflation.

Note that unlike most derivations of the NK model with trend inflation, ψt and φt are
here written in nominal terms instead of real. A number of elements have also not been
cancelled out between them because of the absence of full information. The introduction
of trend inflation implies that price dispersion is non-zero in the linearised model, so the
minimum state under full information is ηt ≡

[
xt pt−1 st−1

]′
. As before, I suppose

that, each period, firms observe noisy signals of that underlying state:

st (i) = ηt + vt (i) vt (i) ∼ N
(
0, σ2

vI
)

(61)

where vt (i) is idiosyncratic white noise, independent both across firms and over time.
This then nests full information by simply taking the variance of vt (i) down to zero.

Proposition 8. When a solution to (60)-(61) exists, that solution is unique, regardless
of the values of φy and φπ, and takes the form:

pt = µ′pZt , yt = µ′yZt , etc. (62a)

Zt = AZt−1 +But (62b)

where

Zt ≡

 ηt
η̃t|t

 (62c)

η̃t|t ≡ (1− ϕ)
∞∑
k=1

ϕk−1η
(k)
t|t (62d)

η
(k)
t|t ≡

 ηt if k = 0
Et

[
η

(k−1)
t|t

]
if k ≥ 1

(62e)

Furthermore, that solution equals the purely forward-looking solution under full informa-
tion when σv = 0 and approaches it smoothly as σv → 0.

Proof. See appendix G. �

As an illustration of the results that emerge when the NK model with trend inflation is
solved under ICK, figure 10 plots the unconditional variance of log deviations of inflation
from trend in the model of (60) for different rates of annual trend inflation. The variance
of firms’ idiosyncratic noise has been set to σ2

v = 10−15, so that the results are comparible
to a setting of universal full information.

The solid black line corresponds to the same line in figure 7, with trend inflation at
zero. As trend inflation increases, the peak in inflation volatility shifts to right. This
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Note: The chart plots the unconditional variance of log-deviations of inflation from its
trend, as a function of the central bank’s marginal responds to those deviations (φπ, for
different values of annual trend inflation. Firms are assumed to have near-full information,
with σ2

v = 10−15. Other parameters are {α, β, σ, ψ, ε, θ} = {1/3, 0.994, 1, 1, 4, 2/3}.

Figure 10: Inflation volatility as a function of trend inflation in the NK model

corresponds to the value of φπ above which the eigenvalue restriction of the Blanchard-
Kahn conditions is satisfied in the underlying full information model, and so matches the
left-most edge of each shaded area in figure 9.35 To the right of each peak, raising φπ has
the usual effect of damping inflation volatility.

To the left of each peak, where a model with full information would have indeterm-
incy and sunspots, the NK model with ICK admits a unique solution in which inflation
volatility is increasing in φπ. The reason for this is unchanged from the case of zero trend
inflation. In this region, the price level is stationary, but with intrinsic persistence that is
increasing in the strategic complementarity faced by firms which is itself increasing in φπ.
The increase in volatility from this increasing persistence outweighs the direct damping
effect of further activism by the central bank, causing overall variance to rise. The price
level achieves a unit root at the peak shown and remains there as φπ continues to rise,
meaning that only the damping effect is further strengthened for higher φπ.

All told, and conditional on the model at hand, raising the inflation target while
keeping the central bank’s decision rule unchanged would increase inflation volatility
(assuming that the decision rule was of the usual Taylor variety), but it need not increase
by overly much, and would not run the risk of extrinsic volatility affecting the economy. It
bears emphasising, however, that the model as presented has been log-linearised around
its respective trend, assuming that trend to be universally known. The full dynamics
of a transition to a new steady state remain unexplored here, and may well require the
forceful application of monetary policy to shape agents’ beliefs regarding that trend.

35The two do not perfectly coincide, as other parameters differ between them.
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7 Liquidity Traps

The previous sections focused on local determinacy in the log-linearised version of the
NK model, implicitly assuming that the trend of the model was constant over time.
In addition to local determinacy, however, the NK model famously has the possibility
of multiple steady-state equilibria when the nominal interest rate is subject to a lower
bound, as emphasised by Benhabib, Schmitt-Grohe and Uribe (2001, 2002).

When at trend, xt = 0 ∀t, firms have full information, prices are flexible and output
remains at its steady-state level. The non-linear equations of the model then become:

1 = β
(
1 + it

) 1
Πt+1

(63)

1 + it = max

1, Π∗
β

(
Πt

Π∗

)φπ (64)

where the first line is the household Euler equation and the second is the central bank’s
decision rule, expanded to include a zero lower bound on the net nominal interest rate.
Trend variables have a line over them, Π∗ is the central bank’s gross inflation target and
Π∗
β

is the gross nominal interest rate when at the central bank’s preferred equilibrium.
Combining the two gives the resultant difference equation for trend inflation:

Πt+1 = βmax

1, Π∗
β

(
Πt

Π∗

)φπ (65)

This is illustrated in figure 11. If the Taylor principle is adhered to where possible,
two steady-state equilibria emerge – the desired one at the chosen inflation target and a
deflationary one. Of these, the deflationary equilibrium is globally stable and the desired
equilibrium is globally unstable. Because the deflationary equilibrium is globally stable,
it is commonly described as a ‘liquidity trap’.

When the central bank declines to satisfy the Taylor principle, however, the desired
steady-state equilibrium is both unique and globally stable, even when the nominal in-
terest rate is subject to a lower bound. If price-setting firms had full information regarding
xt and past deviations from the trend path of the price level, there would be local inde-
terminacy in the vicinity of this equilibrium. With ICK, however, local determinacy is
obtained, thus granting full uniqueness for the entire non-linear model.

8 Conclusion

When price-setting firms are subject to idiosyncratic noise about both current and past
deviations of the economy from its trend, the solution to the linearised NK model is
unique (ruling out sunspots) and features nominal stability, regardless of the reaction
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Note: The green dashed line charts the evolution of trend inflation when the central bank
satisfies the Taylor principle when it is able (φπ = 1.5), subject to a (zero) lower bound
on the nominal interest rate. The blue dot-dashed line charts the evolution when the
central bank never satisfies the Taylor principle (φπ = 0.5).

Figure 11: Evolution of trend inflation in the New Keynesian model

of the central bank. Standard solutions to the New Keynesian model remain when the
Taylor principle is satisfied and the noise faced by firms is taken to zero. But when the
Taylor principle is not satisfied, including when the nominal interest rate is simply pegged
to its steady-state level, a unique and stable solution emerges that features stationarity in
the aggregate price level, provided that firms face at least some heterogeneous uncertainty.
In all cases, as is typical in such models, the information friction represents a real rigidity,
with persistence following a shock increasing in the amount of noise faced by firms.

The uniqueness result rests critically on agents never being able to perfectly agree on
past states of the economy. In practice, this is a remarkably weak assumption. Rational
bubbles are eliminated, for example, so long as at least two agents (in an economy
of millions) are subject to even an epsilon of idiosyncratic noise when observing those
bubbles,36 so that average expectations do not satisfy the law of iterated expectations.
This result extends to settings of positive trend inflation, removing the possibility of
sunspot uncertainty if central banks were to raise their inflation targets, provided that
the revised target was sufficiently well communicated as to shift beliefs about trend.

The determinacy obtained under an interest rate peg is striking, but ultimately per-
fectly intuitive. The peg applied above is to the steady-state value for the nominal
interest rate (which, with trend inflation at zero, is just the steady state real interest
rate, here 1/β). So long as the natural interest rate returns to this value, and firms know

36‘At least two’ among a finite number of agents is equivalent to ‘a strictly positive measure’ for a
continuum of agents in this context, as both are the minimum required to give rise to average expectations
that are not common knowledge.
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that it will return, then the logic of Wicksell (1898) remains intact. If the interest rate
were indefinitely pegged to a different value, however, then it would represent a change
of trend itself. Dynamics would then depend on the extent to which agents recognise the
interest rate peg as a change in the inflation target.

It is important to emphasise that the model, as implemented, is log-linearised around a
deterministic steady state. This imposes an assumption that although firms do not share
common knowledge about the actual price level, they perfectly observe (and agree on) its
underlying trend. In effect, this amounts to an assumption that while firms’ expectations
about near-term inflation remain dispersed, their beliefs about long-run inflation are
perfectly anchored. Conditional on this assumption, nominal stability around that trend
need not require a systematic central bank response to the state of the economy.

Indeed, when firms have full information about the trend and the central bank’s
response to inflation is less than one, the full, non-linear model features a unique, globally
stable steady-state equilibrium even after allowing for the possibility of a lower bound
on interest rates (removing the deflationary trap emphasised by Benhabib, Schmitt-
Grohe and Uribe (2001)). This paper makes no comment on how agents might arrive at
consensus about the steady state of the economy if there were also uncertainty regarding
trend. If, for example, systematic policy is necessary to ensure that long-run expectations
remain well anchored then that would be in addition to the results discussed above.
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Appendix

A Estimating a Taylor rule for the Federal Reserve

All data are quarterly. Federal Funds Rate data and shadow rate data are taken from
Wu and Xia (2016) – I use the interest rate at the end of the first month of each quarter.
All other data are taken from the Federal Reserve Economic Data published by the
Federal Reserve Bank of St. Louis. These include (data codes in parentheses): real GDP
(GDPC1); real potential GDP (GDPPOT); the annualised quarterly change in the GDP
deflator (A191RI1Q225SBEA); the annualised quarterly change in the producer price
index for all commodities (PPIACO_PCA); the annualised quarterly change in the M2
money stock (M2SL_PCA); the quarterly average 10-year constant maturity treasury
rate (GS10); and the quarterly average 3-month treasury bill rate (TB3MS).

The estimated equation is:

rt = ρ rt−1 + (1− ρ) (r + φππt + φyyt) + εt (A.1)

where rt is the federal funds rate prior to the financial crisis of 2008 and the Wu and Xia
(2016) shadow rate thereafter; πt is inflation; and yt is the output gap. I stop the sample
at 2015q4 as that was the last quarter in which the federal funds target range was at its
lower bound. For the GMM estimate, I use one lag of the interest rate, inflation rate,
output gap, commodity inflation, money growth and treasury spread as instruments.
Note that there are only 29 observations in the post-crisis period, so the GMM results
for that period should be treated with caution.

Period OLS GMM Std. dev.
φπ φy ρ φπ φy ρ of inflation

1960:1 – 1979:2 0.80 0.72 0.73 0.81 0.61 0.66 2.83
(0.14) (0.25) (0.08) (0.12) (0.19) (0.08)

1979:3 – 2008:2 2.09 1.45 0.88 2.52 0.83 0.83 2.07
(0.45) (0.67) (0.04) (0.63) (0.38) (0.04)

2008:3 – 2015:4 -0.07 0.20 0.83 -2.39 0.53 0.87 0.86
(0.55) (0.40) (0.08) (2.96) (1.10) (0.14)

Table A.1: Contemporaneous Taylor rules

To allow a more direct comparison to Clarida, Galí and Gertler (2000), I also estimate
the same for a forward-looking rule, replacing πt and yt with πt+1 and yt+1 respectively
(so that εt includes forecast errors):
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Period OLS GMM Std. dev.
φπ φy ρ φπ φy ρ of inflation

1960:1 – 1979:2 0.94 0.50 0.70 0.89 0.76 0.76 2.83
(0.13) (0.19) (0.07) (0.18) (0.34) (0.08)

1979:3 – 2008:2 2.52 2.60 0.91 2.90 1.01 0.85 2.07
(0.86) (1.54) (0.04) (0.73) (0.48) (0.04)

2008:3 – 2015:4 -0.43 -0.05 0.78 -2.39 -0.69 -0.14 0.86
(0.44) (0.34) (0.11) (0.79) (0.35) (0.12)

Table A.2: Forward-looking Taylor rules

B Solving the toy model: proof of proposition 1

B.1 The reduced-form expression for zt.

Substituting (10) into (3), I obtain:

γ ′Xt = βγ ′Et [FXt +Gut+1] + Et [xt] (B.1)

Recall that S and T are selection matrices such that SXt = xt and TXt = Et [Xt]. Then
after straightforward manipulation this becomes:

γ ′ = ST

( ∞∑
s=0

(βFT )s
)

(B.2)

Since T is a shift operator, this sum will be finite only if the spectral radius of βF is less
than one. Since the largest eigenvalue of F is ρ (see below), the spectral radius is less
than one when βρ < 1. In this case, the solution becomes:

γ ′ = ST (I − βFT )−1 (B.3)

B.2 The law of motion for Xt.

The law of motion is a slight generalisation of that presented in Woodford (2003b), exten-
ded here to allow the underlying state to have an arbitrary AR(1) coefficient (Woodford
limited attention to the case of a random walk). With a state-space representation and
Gaussian shocks, the optimal estimator is a Kalman filter. Agent j’s qth-order expectation
(regarding x(q−1)

t|t ) is then given by:

Et(j)
[
x

(q−1)
t|t

]
= Et−1(j)

[
x

(q−1)
t|t

]
+ kq

{
st (j)− Et−1(j)[st (j)]

}
(B.4)

where kq is the time-invariant Kalman gain for the qth-order expectation, which is common
to all agents as their information problems are symmetric. I start with the first-order
expectation (about the underlying state variable itself):

Et(i)[xt] = Et−1(i)[xt] + k1
{
st (i)− Et−1(i)[st (i)]

}
(B.5a)
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where k1 is the Kalman gain.37 Substituting in the signal and law of motion for xt, and
recognising that ut and vt (j) are not forecastable, this rearranges to

Et(i)[xt] = ρk1xt−1 + ρ (1− k1)Et−1(i)[xt−1] + k1 (ut + vt (i)) (B.5b)

Taking the average across all agents then produces

x
(1)
t|t = ρk1xt−1 + ρ (1− k1)x(1)

t−1|t−1 + k1ut (B.5c)

where the law of large numbers allows me to drop the term in the average idiosyncratic
shock. Equation (B.5c) is the law of motion for agents’ first-order average expectation.

Second-order expectations are those about the average first-order expectation:

Et(i)
[
x

(1)
t|t

]
= Et−1(i)

[
x

(1)
t|t

]
+ k2

{
st (i)− Et−1(i)[st (i)]

}
(B.6a)

Substituting in (B.5c), this then becomes

Et(i)
[
x

(1)
t|t

]
= Et−1(i)

[
ρk1xt−1 + ρ (1− k1)x(1)

t−1|t−1 + k1ut
]

+ k2
{
ρxt−1 + ut + vt (i)− ρEt−1(i)[xt−1]

}
(B.6b)

Rearranging and taking the average, together with the law of large numbers again for the
idiosyncratic shocks, then produces the law of motion for agents’ average second-order
expectation:

x
(2)
t|t = ρk2xt−1 + ρ (k1 − k2)x(1)

t−1|t−1 + ρ (1− k2)x(2)
t−1|t−1 + k2ut (B.6c)

Continuing this process, the law of motion for the complete hierarchy of expectations
follows a vector AR(1) process, with the transition matrix lower triangular:

Xt = FXt−1 +Gut (B.7a)

F = ρ



1 0 0 0 · · ·
k1 (1− k1) 0 0 · · ·
k2 (k1 − k2) (1− k1) 0 · · ·
k3 (k2 − k3) (k1 − k2) (1− k1)
...

...
...

. . .


G =



1
k1

k2

k3
...


(B.7b)

The optimal kalman filters

Let agent j’s forecast errors about variable θt be denoted θerr
t|t−1 (i) ≡ θt − Et−1(i)[θt].

The sequence of optimal kalman gains are given by:

k1 = Cov
(
x

(0)
t|t , s

err
t|t−1 (i)

) [
V ar

(
serr
t|t−1 (i)

)]−1
(B.8a)

k2 = Cov
(
x

(1)
t|t , s

err
t|t−1 (i)

) [
V ar

(
serr
t|t−1 (i)

)]−1
(B.8b)

...

37Strictly, i’s period-t Kalman gain should be written as k1,t (i). However, since all agents problems
are symmetric it will be common to all, and since xt is stationary it will converge to a time invariant
form, so that k1,t (i) = k1,t → k1.
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Note that serr
t|t−1 (i) = x

(0):err
t|t−1 (i)+vt (i) and that x(q)

t|t may be rewritten as x(q)
t = x

(q):err
t|t−1 (i)+

Et−1(i)
[
x

(q)
t

]
. Since the signal innovation is, by construction, orthogonal to all past

information, it must be the case that Cov
(
Et−1(i)

[
x

(q)
t

]
, serr
t|t−1 (i)

)
= 0, so the kalman

gains are given by:

k1 = Cov
(
x

(0):err
t|t−1 (i) , x(0):err

t|t−1 (i) + vt (i)
) [
V ar

(
x

(0):err
t|t−1 (i) + vt (i)

)]−1
(B.9a)

k2 = Cov
(
x

(1):err
t|t−1 (i) , x(0):err

t|t−1 (i) + vt (i)
) [
V ar

(
x

(0):err
t|t−1 (i) + vt (i)

)]−1
(B.9b)

...

Let Q = Cov
(
Xerr
t|t−1 (i)

)
be the prior error variance and V = Cov

(
Xerr
t|t (i)

)
be the

posterior error variance, where {qjk} and {νjk} start at j, k = 0 for errors about the
underlying state:

qjk ≡ Cov
(
x

(j):err
t|t−1 (i) , x(k):err

t|t−1 (i)
)

(B.10a)

νjk ≡ Cov
(
x

(j):err
t|t (i) , x(k):err

t|t (i)
)

(B.10b)

The kalman gains can then be written simply as

k1 = q00
(
q00 + σ2

v

)−1
(B.11a)

k2 = q10
(
q00 + σ2

v

)−1
(B.11b)

k3 = q20
(
q00 + σ2

v

)−1
(B.11c)

...

From the law of motion, the prior expectation errors follow

x
(0):err
t|t−1 (i) = ρ

{
x

(0):err
t−1|t−1 (i)

}
+ ut (B.12a)

x
(1):err
t|t−1 (i) = ρ

{
k1x

(0):err
t−1|t−1 (i) + (1− k1)x(1):err

t−1|t−1 (i)
}

+ k1ut (B.12b)

x
(2):err
t|t−1 (i) = ρ

{
k2x

(0):err
t−1|t−1 (i) + (k1 − k2)x(1):err

t−1|t−1 (i) + (1− k1)x(2):err
t−1|t−1 (i)

}
+ k2ut (B.12c)

...

which implies that, for the convergent solution,

q00 = ρ2 {ν00}+ σ2
u (B.13a)

q10 = ρ2 {k1ν00 + (1− k1) ν10}+ k1σ
2
u (B.13b)

q20 = ρ2 {k2ν00 + (k1 − k2) ν10 + (1− k1) ν20}+ k2σ
2
u (B.13c)

...
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Similarly, from the definition of the kalman filter, the posterior expectation errors are:

x
(0):err
t|t (i) = (1− k1)x(0):err

t|t−1 (i)− k1vt (i) (B.14a)

x
(1):err
t|t (i) = (1− k2)x(1):err

t|t−1 (i)− k2vt (i) (B.14b)

x
(2):err
t|t (i) = (1− k3)x(2):err

t|t−1 (i)− k3vt (i) (B.14c)
...

which implies

ν00 = (1− k1) (1− k1) q00 + k1k1σ
2
v (B.15a)

ν10 = (1− k2) (1− k1) q10 + k2k1σ
2
v (B.15b)

ν20 = (1− k3) (1− k1) q20 + k3k1σ
2
v (B.15c)

...

The three systems of equations (B.11), (B.13) and (B.15) may then be solved recurs-
ively. Starting with equations (B.11a), (B.13a) and (B.15a), it is easy to see that

q00 = ρ2


(

σ2
v

q00 + σ2
v

)2

q00 +
(

q00

q00 + σ2
v

)2

σ2
v

+ σ2
u (B.16)

which solves as:38

q00 = σ2
u

2

{
1−

(
1− ρ2

)
δ +

((
1− ρ2

)2
δ2 + 2

(
1 + ρ2

)
δ + 1

) 1
2
}

(B.17)

where δ ≡ σ2
v

σ2
u
. The convergent value for k1 is therefore

k1 =
1− (1− ρ2) δ +

(
(1− ρ2)2

δ2 + 2 (1 + ρ2) δ + 1
) 1

2

1− (1− ρ2) δ +
(
(1− ρ2)2 δ2 + 2 (1 + ρ2) δ + 1

) 1
2 + 2δ

(B.18)

from which it is clear that k1 ∈ (0, 1) for positive δ and positive ρ, and that:

• k1 → 1 as δ → 0

• k1 → 0 as δ →∞

• k1 → 1/ (1 + δ) as ρ→ 0

• k1 → 1 as ρ→∞

For subsequent elements, note that equation (B.13) may be rewritten as

q00 = ρ2 {ν00}+ σ2
u (B.19a)

qj0 = kjσ
2
u + ρ2

kjν00 +
j−1∑
l=1

(kj−l − kj−l+1) νl0

+ ρ2 (1− k1) νj0 j ≥ 1 (B.19b)

38As a variance, q00 must be positive so the negative root may be ignored.
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and that after partially substituting in (B.11), equation (B.15) may be rewritten as

ν00 = (1− k1) (1− k1) q00 + k1k1σ
2
v (B.20a)

νj0 =
(

1− qj0
q00 + σ2

v

)
(1− k1) qj0 + qj0

q00 + σ2
v

k1σ
2
v j ≥ 1 (B.20b)

Substituting (B.20b) into (B.19b) then shows that qj0 must satisfy the quadratic:

a (qj0)2 + b (qj0) + cj = 0 (B.21a)

where

a = ρ2 (1− k1)2
(

1
q00 + σ2

v

)
(B.21b)

b = 1− ρ2 (1− k1)2 (1 + k1) (B.21c)

cj = −

kjσ2
u + ρ2

kjν00 +
j−1∑
l=1

(kj−l − kj−l+1) νl0


 (B.21d)

Note that a and b are common for all j, and that cj will be pre-determined when calcu-
lating qj0, so solving (B.21a) gives qj0 exactly (i.e. there is no need to find a fixed point
through iteration). Finally, also note that since agents’ signals of the underlying shock
are unbiased and agents are rational, then the covariances of all higher-order expectations
with the underlying shock must be positive (Cov

(
x

(q)
t|t , xt

)
> 0 ∀q), the negative roots to

the solutions of (B.21a) may be rejected.

B.3 Nesting of, and convergence towards, the full-information
forward solution.

Under full information, it must be the case that x(q)
t|t = xt ∀ q, so that F = ρ

[
1∞×1 0∞×∞

]
and G =

[
1∞×1

]
, from which it is clear that (B.2) collapses to (7a). That the solution

under idiosyncratically noisy information converges to this smoothly as σ2
v → 0 follows

directly from the optimality of the Kalman filter.

C The NKPC with ICK and positive trend inflation

This appendix derives the New Keynesian Phillips Curve when firms face imperfect com-
mon knowledge. In contrast to Nimark (2008), I here include both (i) the possibility of
non-zero trend inflation and (ii) ongoing uncertainty about past price levels. Much of the
derivation extends the standard treatment of, for example, Ascari and Sbordone (2014)
although the expressions for the present discount values of expected future marginal
revenue and cost are written in nominal terms rather than real.
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C.1 The (representative) household and central bank

The representative household and central bank are unchanged from the textbook model.
I present usual the log-linearised equations without comment:

yt = EΩ
t [yt+1]− σ

(
it − EΩ

t [pt+1] + pt − xt
)

(C.1)

wt − pt = 1
ψ
nt + 1

σ
yt (C.2)

it = φπ (pt − pt−1) + φyyt (C.3)

C.2 Production, demand and pricing

Firm production is in terms of labour, with decreasing marginal productivity:

Yi,t = N1−α
i,t (C.4)

Firm demand comes from a Dixit-Stiglitz aggregator:

Yi,t =
(
Pi,t
Pt

)−ε
Yt (C.5)

Firms face Calvo pricing frictions. Let the firm’s (nominal) reset price be Qit and the
probability of not resetting each period be θ. The aggregate price level evolves as:

P 1−ε
t =

∫ 1

0
P 1−ε
i,t di

= θP 1−ε
t−1 + (1− θ)

∫ 1

0
Q1−ε
i,t di (C.6)

When able to reset, firms seek to maximise their expected flow of real profits:

max
Qit

Ei,t

 ∞∑
j=0

Λt,j

Λt,0
(βθ)j

{
Qit

Pt
Yi,t+j|Pi,t+j=Qi,t −

Wt+j

Pt+j
Ni,t+j|Pi,t+j=Qi,t

} (C.7)

subject to (C.4) and (C.5), and where Λt,j = C−σt+j = Y −σt+j , such that βs Λt,j
Λt,0 is the (real)

stochastic discount factor for period t+ j from the perspective of period t. Substituting
these both in, the problem is then:

max
Qit

Ei,t

 ∞∑
j=0

Λt,j

Λt,0
(βθ)j


(
Qi,t

Pt+j

)1−ε

Yt+j −
(
Wt+j

Pt+j

)
(Yt+j)

1
1−α

(
Qi,t

Pt+j

) −ε
1−α


 (C.8)

The first-order condition is:

(1− ε)Ei,t

 ∞∑
j=0

Λt,j

Λt,0
(βθ)j

(
Qi,t

Pt+j

)−ε
Yt+j
Pt+j


=
( −ε

1− α

)
Ei,t

 ∞∑
j=0

Λt,j

Λt,0
(βθ)j

(
Wt+j

Pt

)
(Yt+j)

1
1−α

(
Qi,t

Pt+j

) −ε
1−α−1 1

Pt+j

 (C.9)
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or, gathering the terms in Qit,

Q
(1+ αε

1−α)
i,t =

(
ε

ε− 1

)( 1
1− α

)
Ei,t [Ψt]
Ei,t [Φt]

(C.10)

where

Ψt =
∞∑
j=0

(βθ)j
(
Yt+j
Yt

)−σ (Wt+j

Pt+j

)
(Yt+j)

1
1−α (Pt+j)

ε
1−α (C.11)

Φt =
∞∑
j=0

(βθ)j
(
Yt+j
Yt

)−σ
(Pt+j)ε−1 Yt+j (C.12)

and I have substituted in for Λt,j. Note that Ψt and Φt can be written recursively:

Ψt =
(
Wt

Pt

)
Y

1
1−α
t P

ε
1−α
t + (βθ)

(
Yt+1

Yt

)−σ
Ψt+1 (C.13)

Φt = P ε−1
t Yt + (βθ)

(
Yt+1

Yt

)−σ
Φt+1 (C.14)

Trend values of Ψ and Φ (note that nominal variables still get a time subscript when at
trend if Π 6= 1):

Φt =
(

Y

1− βθΠε−1

)
P
ε−1
t (C.15)

Ψt =


(
W
P

)
Y

1
1−α

1− βθΠ
ε

1−α

P ε
1−α
t (C.16)

Linearising everything:

pt = θΠε−1
pt−1 +

(
1− θΠε−1) ∫ 1

0
qi,t di (C.17)

qi,t =
( 1− α

1− α + αε

)
Ei,t [ψt − φt] (C.18)

ψt =
(

1− βθΠ
ε

1−α

)(
wt − pt +

( 1
1− α

)
yt + ε

1− αpt
)

+ βθΠ
ε

1−α (ψi,t+1 − σ (yt+1 − yt)) (C.19)

φt =
(
1− βθΠε−1) (yt + (ε− 1) pt) + βθΠε−1 (φt+1 − σ (yt+1 − yt)) (C.20)

C.3 Aggregation and price dispersion

Labour market clearing implies:

Nt =
∫ 1

0
Ni,t di

=
∫ 1

0
(Yi,t)

1
1−α di

= (Yt)
1

1−α

∫ 1

0

(
Pi,t
Pt

) −ε
1−α

di︸ ︷︷ ︸
St

(C.21)
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With Calvo pricing, St must follow:

St = (1− θ)
∫ 1

0

(
Qi,t

Pt

) −ε
1−α

di+ θΠ
ε

1−α
t St−1 (C.22)

When at trend, this is:

S =
(1− θ)

(
Q
P

) −ε1−α

1− θΠ
ε

1−α
(C.23)

Log-linearising around trend then gives:

nt =
( 1

1− α

)
yt + st (C.24)

st =
(

1− θΠ
ε

1−α

)( −ε
1− α

)(∫ 1

0
qi,tdi− pt

)
+ θΠ

ε
1−α

(
st−1 + ε

1− α (pt − pt−1)
)

(C.25)

or, substituting in equation (C.17) to replace the average reset price,

st =
(
θΠ

ε
1−α

)
st−1 +

(
ε

1− α

)(
θ

1− θΠε−1

)(
Π

ε
1−α − Πε−1

) (
pt − pt−1

)
(C.26)

C.4 The full system

Bringing everything together, I have:

yt = EΩ
t [yt+1]− σ

(
it − EΩ

t [pt+1] + pt − xt
)

(C.27)

it = φπ (pt − pt−1) + φyyt (C.28)

pt = θΠε−1
pt−1 +

(
1− θΠε−1)( 1− α

1− α + αε

)
Et [ψt − φt] (C.29)

ψt =
(

1− βθΠ
ε

1−α

)(
(1 + ω) yt + 1

ψ
st + ε

1− αpt
)

+ βθΠ
ε

1−α
(
ψt+1 − σ (yt+1 − yt)

)
(C.30)

φt =
(
1− βθΠε−1) (yt + (ε− 1) pt) + βθΠε−1 (

φt+1 − σ (yt+1 − yt)
)

(C.31)

st =
(
θΠ

ε
1−α

)
st−1 +

(
ε

1− α

)(
θ

1− θΠε−1

)(
Π

ε
1−α − Πε−1

) (
pt − pt−1

)
(C.32)

where ω = 1
σ
−1+

(
1

1−α

) (
1 + 1

ψ

)
. The final four equations together represent the Phillips

curve.

C.5 Linear production and zero trend inflation

With constant returns to scale in production (α = 0) and zero trend inflation (Π = 1),
equations (C.29)-(C.32) become:

pt = θpt−1 + (1− θ)Et [ψt − φt] (C.33)

ψt = (1− βθ) ((1 + ω) yt + ε pt) + βθ
(
ψt+1 − σ (yt+1 − yt)

)
(C.34)

φt = (1− βθ) (yt + (ε− 1) pt) + βθ
(
φt+1 − σ (yt+1 − yt)

)
(C.35)

st = 0 (C.36)
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In this case, I can define q∗t ≡ ψt − φt and write:

pt = θpt−1 + (1− θ)Et [q∗t ] (C.37)

q∗t = (1− βθ) (ωyt + pt) + βθq∗t+1 (C.38)

where ωyt is the average real marginal cost and q∗t is the optimal reset price. To recover
the expressions in the main text, note that:

Et

[
q∗t+1

]
=
∫ 1

0
Et(i)

[
q∗t+1

]
di

=
∫ 1

0
Et(i)

[
Et+1(i)

[
q∗t+1

]]
di

=
∫ 1

0
Et(i)[qt+1(i)] di

= Et [qt+1]

= Et

[
pt+1 − θpt

1− θ

]
(C.39)

where the second equality uses the fact that the law of iterated expectations must apply to
individual information sets when they are only increasing over time; the fourth equality
uses the symmetry of firms’ problems; and the final equality substitutes in from pt =
θpt−1 + (1− θ) qt. Substituting this back in then gives equation (36) in the main text.

D Proof of proposition 4

The solution coefficients γ and λ may readily be calculated numerically with any of a
variety of standard solution methods. To derive algebraic expressions for them, I first
combine the CB’s decision rule, the HH’s Euler equation and the NKPC to produce a
single competitive equilibrium condition.

D.1 Obtaining a single competitive equilibrium condition

Combining the central bank’s decision rule with the household’s Euler equation and
substituting forward, I obtain:39

yt = σδ (1− δρ)−1 xt

+ σδ φπ pt−1

− σδ (1− φπδ + φπ) pt

+ σδ (1− δφπ) (1− δ)
∞∑
s=0

δsEΩ
t [pt+s+1] (D.1)

39A limiting term of lims→∞ δsEΩ
t [yt+s+1] has been implicitly set to zero in (D.1). Since transversality

is satisfied by definition in purely forward-looking solutions and I later demonstrate the inadmissibility
of backward-looking solutions, its absence here is innocuous.
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Substituting (D.1) into (36) then gives the model’s equilibrium condition:

pt = bpEt [xt] + θpt−1 + ζ−1Et [pt−1]

+ ζ0 Et [pt]

+ βθ Et [pt+1]

+ ζ1+Et

[
(1− δ)

∞∑
s=0

δspt+s+1

]
(D.2a)

This gives the current log deviation of the price level from its steady-state path in terms
of (i) the previous period’s log deviation; (ii) firms’ average expectation of the current
value of the underlying shock process; and (iii) firms’ average expectations of the past,
current and all future price levels (note that pt+1 appears in both of the bottom two
lines). The compound parameters are given by:

bp = θκσδ (1− δρ)−1 (D.2b)

ζ−1 = θκσδφπ (D.2c)

ζ0 = 1− θ (1 + β)− θκσδ (1− φπδ + φπ) (D.2d)

ζ1+ = θκσδ (1− φπδ) (D.2e)

Although perhaps unusual, (D.2) is a perfectly valid statement of the equilibrium condi-
tion underlying Galí (2008), extended here only to accomodate incomplete information
among price-setting firms. Note that the term on the final line of (D.2a) is a weighted av-
erage of all future price deviations. When φy > 0 it is skewed in favour of the near-term,
while when φy = 0 it is a simple average. Regardless, since trend inflation is assumed to
be zero, it follows that lim

φy→0
(1− δ)∑∞s=0 δ

spt+s+1 = lim
s→∞

pt+s. This will be non-zero for
any xt 6= 0 if prices exhibit a unit root, as in the standard solution to the NK model.

D.2 Solving the model under full information

Under full information the competitive equilibrium condition (D.2) simplifies to:

pt =
(

1
1− ζ0

)(
bpxt + (θ + ζ−1) pt−1 + βθEΩ

t [pt+1] + ζ1+EΩ
t

[
(1− δ)

∞∑
s=0

δspt+s+1

])
(D.3)

While firms’ expectation of future prices must be formed as:

EΩ
t [pt+1] = γ (ρ+ λ)xt + λ2pt−1 (D.4a)

EΩ
t [pt+2] = γ

(
ρ2 + λρ+ λ2

)
xt + λ3pt−1 (D.4b)

EΩ
t [pt+3] = γ

(
ρ3 + λρ2 + λ2ρ+ λ3

)
xt + λ4pt−1 (D.4c)

...
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Substituting (D.4) into (D.3) then gives

pt =
(

1
1− ζ0

)


(bp + βθγ (ρ+ λ))xt
+ (θ + ζ−1 + βθλ2) pt−1

+ ζ1+ (1− δ)
∞∑
s=0

δs

γ
s+1∑
q=0

ρqλs+1−q

xt + λs+2pt−1



 (D.5)

Gathering like terms, it follows that

γ =
(

1
1− ζ0

)bp + βθγ (ρ+ λ) + γ ζ1+ (1− δ)
∞∑
s=0

δs

s+1∑
q=0

ρqλs+1−q

 (D.6a)

λ =
(

1
1− ζ0

)(
θ + ζ−1 + βθλ2 + λ2ζ1+

(
1− δ

1− δλ

))
(D.6b)

The coefficient γ

Starting with the expression for γ, note that (D.6a) may be rewritten as

γ = bp
ξ

where ξ = 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)
∞∑
s=0

δs

s+1∑
q=0

ρqλs+1−q

 (D.7a)

The expression for ξ can then be re-expressed as:

ξ = 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)
∞∑
s=0

δsλs+1

s+1∑
q=0

(
ρ

λ

)q
= 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)

∞∑
s=0

δsλs+1

1−
(
ρ
d

)s+2

1− ρ
λ


= 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)

(
λ

1− ρ
λ

) ∞∑
s=0

(δλ)s
(

1−
(
ρ

λ

)s+2
)

= 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)
(

λ

1− ρ
λ

)(
1

1− δλ −
(
ρ

λ

)2 1
1− δρ

)
(D.8)

where the final equality requires that δλ < 1. For values of λ ≥ 1
δ
, the sum ∑∞

s=0 (δλ)s

will explode, leading to γ = 0 (that is, non-existence of a solution).40 The expression
(D.8) simplifies further as

ξ = 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)
(

1
λ− ρ

)(
λ2

1− δλ −
ρ2

1− δρ

)

= 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)
(

λ+ ρ− δρλ
(1− δλ) (1− δρ)

)
(D.9)

40Note that since ρ ∈ (0, 1) and δ ∈ (0, 1], it must be the case that δρ < 1. Also note that the third

equality does not require that ρ
λ < 1 in order to write

(
1−( ρλ )s+2

1− ρλ

)
, as the latter is simplifying a finite

(rather than infinite) sum.
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Expanding ζ0 and ζ1+ , this then becomes

ξ = θ (1 + β) + θκσδ (φπ + 1− φπδ)− βθ (ρ+ λ)

− θκσδ (1− φπδ) (1− δ)
(

λ+ ρ− δρλ
(1− δλ) (1− δρ)

)
(D.10)

or, after some straightforward manipulation,

ξ = θ + βθ (1− ρ− λ) + θκσ

(
1− (1− δ)

(1− δλ)
(1− δφπ)
(1− δρ)

)
(D.11)

The coefficient λ

Next looking at the expression for λ, we can rewrite (D.6b) as
{
βθδ

}
λ3 −

{
βθ + (1− ζ0) δ + ζ2+

}
λ2 +

{
1− ζ0 + (θ + ζ−1) δ

}
λ−

{
θ + ζ−1

}
= 0 (D.12)

Expanding the latter three compound parameters, we have{
βθ + (1− ζ0) δ + ζ2+

}
= βθ + δθ (1 + β) + θκσδ (D.13a){

1− ζ0 + (θ + ζ−1) δ
}

= βθ + θ (1 + δ) + θκσδ (1 + φπ) (D.13b){
θ + ζ−1

}
= θ + θκσδφπ (D.13c)

It is easy to confirm that (D.12) has a root of λ = 1:
{
βθδ

}
(1)3 −

{
βθ + (1− ζ0) δ + ζ2+

}
(1)2 +

{
1− ζ0 + (θ + ζ−1) δ

}
(1)−

{
θ + ζ−1

}
= 0 (D.14)

Given this, (D.12) may be rewritten as:

(λ− 1)
({
βθδ

}
λ2 −

{
βθ + δθ + θκσδ

}
λ+

{
θ + θκσδφπ

})
= 0 (D.15)

from which the other two roots may be readily obtained as

λ = β + δ + κσδ

2βδ ±

√
(β + δ + κσδ)2 − 4βδ (1 + κσδφπ)

2βδ (D.16)

These are the non-zero eigenvalues of the system highlighted in the main text. To see
that the solution is the lower envelope of these, start from equation (40) in the main text.
Cho and Moreno (2011) show that substituting this expression forward gives:

ζt = MkE
Ω
t [ζt+k] + Λkζt−1 + Γkxt (D.17a)

where M1 = A, Λ1 = B, Γ1 = C and, for k ≥ 2,

Mk = (I − AΛk−1)−1AMk−1 (D.17b)

Λk = (I − AΛk−1)−1B (D.17c)

Γk = (I − AΛk−1)−1 (C + AΓk−1ρ) (D.17d)
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so that, in the limit,

ζt = Λζt−1 + Γxt + lim
k→∞

MkE
Ω
t [ζt+k] (D.18)

where Λ = limk→∞ Λk and Γ = limk→∞ Γk and under the purely forward-looking solution
the limiting expectation term (which accomodates backward-looking solutions) is zero.
Since the eigenvalues of D are all distinct, the model must have a dominant solvent (S1)
and a minimal solvent (S2), where

min {|λ| : λ ∈ λ (S1)} > max {|λ| : λ ∈ λ (S2)} (D.19)

When S1 and S2 exist (as they do here), Rendahl (2017) proves that the sequence (D.17c)
must converge to S2, provided that Λ1 6= S1. But since we have Λ1 = B, the proof is
established. Given the simplicity of the basic NK model, it is also straightforward here
to confirm convergence to the minimal solution numerically.

E Proof of proposition 5

Recall that the candidate solution is of the form:

Zt ≡
[
xt pt−1 x̃t|t p̃t−1|t

]′
(E.1a)

Zt =


ρ 0 0 0
0 θ α3 α4

a31 a32 a33 a34

a41 a42 a43 a44


︸ ︷︷ ︸

A

Zt−1 +


1
0
b3

b4


︸ ︷︷ ︸
B

ut (E.1b)

pt =
[
0 θ α3 α4

]
︸ ︷︷ ︸

α′

Zt (E.1c)

where I have filled in some elements of A, B and α directly from the given law of
motion for xt and the equilibrium condition. Given this solution, firms’ signal vectors
are expressible as:

st (i) =
1 0 0 0

0 1 0 0


︸ ︷︷ ︸

N

Zt +
1 0

0 1


︸ ︷︷ ︸

O

vt (i) (E.2)

E.1 Firms’ expectations

Without full information, individual firms must form expectations about the current state
of the economy (Zt). Since firms’ signals may be written as st (j) = NZt + σ2

vI2, the
model is in state-space form and the Bayes-rational estimator is the Kalman filter:

Et(j)[Zt] = Et−1(j)[Zt] +Mt

{
st (j)− Et−1(j)[st (j)]

}
(E.3)
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whereMt is the (4× 2) Kalman gain, common to all firms as their problems are symmet-
ric. Defining Vt|t−1 ≡ V ar

(
Zt − Et−1(j)[Zt]

)
as the variance of firms’ prior expectation

errors, then for a given law of motion, the optimal filter converges to a time-invariant
M ≡

[
mx mp

]
that satisfies:41

M = V N ′
(
NVN ′ + σ2

vI2
)−1

(E.4a)

V = A
(
V − V N ′

(
NVN ′ + σ2

vI2
)−1

NV
)
A′ + σ2

uBB
′ (E.4b)

E.2 Reduced-form coefficients

Writing the solution as pt = α′pZt, simple inspection of the equilibrium condition (D.2)
is sufficient to note that α′p =

[
0 θ α3 α4

]
. Next, see that it must be the case that

(i) under full information, x̃t|t = xt and p̃t−1|t = pt−1; and (ii) x̃t|t → xt and p̃t−1|t → pt−1

as σ2
v → 0 by the optimality of the Kalman filter. It therefore follows that αp must be

consistent with the solution under full information (43), so that:

α′p =
[
0 θ γ λ− θ

]
(E.5)

E.3 Determining the law of motion

The law of motion for xt is given and the law of motion for pt−1 comes from the solution
for α shown above, so I here focus on those for x̃t|t and p̃t−1|t. The process for deriving
them is equivalent to that in Woodford (2003b). First, note that given their definitions,
we can write:

x̃t|t =
[
(1− ϕ) 0 ϕ 0

]
︸ ︷︷ ︸

ϕ′x

Et [Zt] (E.6a)

p̃t−1|t =
[
0 (1− ϕ) 0 ϕ

]
︸ ︷︷ ︸

ϕ′p

Et [Zt] (E.6b)

or, rearranging these,

Et

[
x̃t|t
]

= 1
ϕ

(
x̃t|t − (1− ϕ)Et [xt]

)
(E.7a)

Et

[
p̃t−1|t

]
= 1
ϕ

(
p̃t−1|t − (1− ϕ)Et [pt−1]

)
(E.7b)

Next, write agents’ Kalman filter for Zt:

Et(i)[Zt] = Et−1(i)[Zt] +M
{
st (i)− Et−1(i)[st (i)]

}
(E.8)

41For a derivation, see Hamilton (1994).
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where M =
[
mx mp

]
is a (4× 2) Kalman gain matrix to be determined. Expanding

this out and taking the average gives:

Et [Zt] = AEt−1 [Zt−1] +M
{
N (AZt−1 +But)−NAEt−1 [Zt−1]

}
(E.9)

Gathering like terms and then substituting this into (E.6) then gives:

x̃t|t = ϕ′x
(
(I −MN)AEt−1 [Zt−1] +MNAZt−1 +MNBut

)
(E.10a)

p̃t−1|t = ϕ′p
(
(I −MN)AEt−1 [Zt−1] +MNAZt−1 +MNBut

)
(E.10b)

Note that NA and NB are given by:

NA =
ρ 0 0 0

0 θ γ λ− θ

 NB =
1

0

 (E.11)

E.3.1 The law of motion for x̃t|t

Stepping (E.7) back one period, we can expand (E.10a) to read:

x̃t|t = (ϕ′xA−ϕ′xMNA)


Et−1 [xt−1]
Et−1 [pt−2]

1
ϕ

(
x̃t−1|t−1 − (1− ϕ)Et−1 [xt−1]

)
1
ϕ

(
p̃t−2|t−1 − (1− ϕ)Et−1 [pt−2]

)


+ϕ′xMNAZt−1 +ϕ′xMNBut (E.12)

Expanding ϕ′xA and NA and NB, and then gathering like terms, this gives:

x̃t|t = {ϕ′xmxρ}xt−1

+ {ϕ′xmpθ} pt−2

+
{
a33 −ϕ′xmp

γ

ϕ
+ϕ′xmpγ

}
x̃t−1|t−1

+
{
a34 −ϕ′xmp

λ− θ
ϕ

+ϕ′xmp (λ− θ)
}
p̃t−2|t−1

+
{

(1− ϕ) ρ+ a31ϕ− a33 (1− ϕ)−ϕ′xmxρ+ϕ′xmp
γ

ϕ
(1− ϕ)

}
Et−1 [xt−1]

+
{
a32ϕ− a34 (1− ϕ)−ϕ′xmpθ +ϕ′xmp

λ− θ
ϕ

(1− ϕ)
}
Et−1 [pt−2]

+ϕ′xmxut (E.13)
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This will fit the proposed solution if

a31 = ρϕ′xmx (E.14a)

a32 = θϕ′xmp (E.14b)

a33 = a33 +ϕ′xmp

(
1− ϕ
ϕ

)
γ (E.14c)

a34 = a34 +ϕ′xmp

(
1− ϕ
ϕ

)
(λ− θ) (E.14d)

0 = (1− ϕ) ρ+ a31ϕ− a33 (1− ϕ)−ϕ′xmxρ+ϕ′xmp
γ

ϕ
(1− ϕ) (E.14e)

0 = a32ϕ− a34 (1− ϕ)−ϕ′xmpθ +ϕ′xmp
λ− θ
ϕ

(1− ϕ) (E.14f)

b3 = ϕ′xmx (E.14g)

Combining (E.14a), (E.14c) and (E.14e) then gives

a33 = ρ (1−ϕ′xmx) (E.15)

While combining (E.14b), (E.14d) and (E.14f) gives

a34 = −θϕ′xmp (E.16)

E.3.2 The law of motion for p̃t−1|t

Stepping (E.7) back one period, we can expand (E.10b) to read:

p̃t−1|t =
(
ϕ′pA−ϕ′pMNA

)


Et−1 [xt−1]
Et−1 [pt−2]

1
ϕ

(
x̃t−1|t−1 − (1− ϕ)Et−1 [xt−1]

)
1
ϕ

(
p̃t−2|t−1 − (1− ϕ)Et−1 [pt−2]

)


+ϕ′pMNAZt−1 +ϕ′pMNBut (E.17)

Expanding ϕ′xA and NA and NB, and then gathering like terms, this gives:

p̃t−1|t =
{
ϕ′pmxρ

}
xt−1 (E.18)

+
{
ϕ′pmpθ

}
pt−2

+
{(

γ (1− ϕ) + a43ϕ

ϕ

)
−ϕ′pmp

γ

ϕ
+ϕ′pmpγ

}
x̃t−1|t−1

+
{(

(λ− θ) (1− ϕ) + a44ϕ

ϕ

)
−ϕ′pmp

λ− θ
ϕ

+ϕ′pmp (λ− θ)
}
p̃t−2|t−1

+
{
a41ϕ−

(
γ (1− ϕ) + a43ϕ

ϕ

)
(1− ϕ)−ϕ′pmxρ+ϕ′pmp

γ

ϕ
(1− ϕ)

}
Et−1 [xt−1]

+
{
θ (1− ϕ) + a42ϕ−

(
(λ− θ) (1− ϕ) + a44ϕ

ϕ

)
(1− ϕ)−ϕ′pmpθ +ϕ′pmp

(λ− θ)
ϕ

(1− ϕ)
}
Et−1 [pt−2]

+ϕ′pmxut (E.19)
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This will fit the proposed solution if

a41 = ρϕ′pmx (E.20a)

a42 = θϕ′pmp (E.20b)

a43 =
(
γ (1− ϕ) + a43ϕ

ϕ

)
−ϕ′pmp

γ

ϕ
+ϕ′pmpγ (E.20c)

a44 =
(

(λ− θ) (1− ϕ) + a44ϕ

ϕ

)
−ϕ′pmp

λ− θ
ϕ

+ϕ′pmp (λ− θ) (E.20d)

0 = a41ϕ−
(
γ (1− ϕ) + a43ϕ

ϕ

)
(1− ϕ)−ϕ′pmxρ+ϕ′pmp

γ

ϕ
(1− ϕ) (E.20e)

0 = θ (1− ϕ) + a42ϕ−
(

(λ− θ) (1− ϕ) + a44ϕ

ϕ

)
(1− ϕ)−ϕ′pmpθ +ϕ′pmp

(λ− θ)
ϕ

(1− ϕ)

(E.20f)

b4 = ϕ′pmx (E.20g)

Combining (E.20a), (E.20c) and (E.20e) then gives

a43 = γ − ρϕ′pmx (E.21)

While combining (E.20b), (E.20d) and (E.20f) gives

a44 = λ− θϕ′pmp (E.22)

E.3.3 The overall law of motion

For given values of ϕ, M and α, the law of motion is therefore given by:

Zt =


ρ 0 0 0
0 θ γ λ− θ

ρϕ′xmx θϕ′xmp ρ (1−ϕ′xmx) −θϕ′xmp

ρϕ′pmx θϕ′pmp γ − ρϕ′pmx λ− θϕ′pmp


︸ ︷︷ ︸

A

Zt−1 +


1
0

ϕ′xmx

ϕ′pmx


︸ ︷︷ ︸

B

ut (E.23)

E.4 The equilibrium degree of strategic complementarity (ϕ)

The next step is to find ϕ (the weight used in constructing x̃t|t and p̃t−1|t). We have that

pt = α′Zt = θpt−1 + (λ− θ) p̃t−1|t + γ x̃t|t (E.24)

Given A, firms’ average expectation of the next-period price level is therefore given by:

Et [pt+1] = α′Et [Zt+1] = α′Et


xt+1

pt

x̃t+1|t+1

p̃t|t+1

 = α′Et


a′1Zt

pt

a′2Zt

a′4Zt

 = α′
(
e2Et [pt] + J2AEt [Zt]

)
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where e2 is a column vector of zeros with a one in the third position, and J2 is the
identity matrix modified to put a zero in the third position of the lead diagonal. Since
Et [Zt+q] = Aq−1Et [Zt+1], it follows that:

Et [pt+q] = α′Aq−1
(
e2Et [pt] + J2AEt [Zt]

)
(E.25)

Substituting (E.25) into the competitive equilibrium condition (D.2) then gives

pt = θ pt−1

+
[
bp ζ−1 0 0

]
Et [Zt]

+ ζ0 Et [pt]

+ βθ α′
(
e2Et [pt] + J2AEt [Zt]

)
+ ζ1+ (1− δ)

∞∑
q=1

δq−1α′Aq−1
(
e2Et [pt] + J2AEt [Zt]

)
(E.26)

Or, gathering like terms,

pt = θpt−1 + d′Et [Zt] + ϕEt [pt] (E.27a)

where

d′ =
[
bp ζ−1 0 0

]
+α′

βθ + ζ1+ (1− δ)
∞∑
q=0

(δA)q
 J2A (E.27b)

ϕ = ζ0 + βθα′e2 + ζ1+α′

(1− δ)
∞∑
q=0

(δA)q
 e2 (E.27c)

The coefficient ϕ is the equilibrium degree of strategic complementarity in firms’ price-
setting decisions (that is, after taking account of demand and the entire expected future
path of prices). Expanding the compound parameters α′e2, ζ0 and ζ1+ , equation (E.27c)
may then be rewritten as:

ϕ = (1− θ) (1− βθ)
1− σωδ

φπ + (1− φπδ)
1−α′

(1− δ)
∞∑
q=0

(
δA (ϕ)

)q e2

 (E.28)

where I have emphasised that the transition matrix A is itself a function of ϕ.

E.5 Bringing everything together

We then have that, conditional on a particular forward-looking solution under full in-
formation (λ, γ), the law of motion is a function of the Kalman gain and the strategic
complementarity (A = f (M,ϕ)); the Kalman gain is a function of the law of motion
(M = g (A)); and the strategic complementarity is a function of the law of motion
(ϕ = h (A)). The solution is then the fixed point of equations (E.4), (E.23) and (E.28):
A = f (g (A) , h (A)).
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F Uniqueness

F.1 Proof of proposition 6

To begin, recall that the equilibrium conditions of the model are:

pt = θpt−1 + (1− θ (1 + β))Et [pt] + βθEt [pt+1] + κθEt [yt] (F.1a)

yt = δEΩ
t [yt+1]− δσ

(
φπ (pt − pt−1)−

(
EΩ
t [pt+1]− pt

)
− xt

)
(F.1b)

and the purely forward-looking solution is of the form:

Zt = AZt−1 +But (F.2a)

ζt = α′Zt (F.2b)

The candidate solution, including the bubble term, is:

ζt = α′Zt + εt (F.3)

A0εt = A1E
Ω
t [εt+1] +B1εt−1 (F.4)

where A0, A1 and B1 are defined in the main text. Define µ ∈ (0, 1) and suppose that
firms’ period-t signals about ε are given by:42

sεt (i) =

 εt + vεt (i) if i ∈ [0, µ)
εt if i ∈ [µ, 1]

(F.5)

where vεt (i) ∼ i.i.d.N (0, σ2
ε I2). Substituting (F.3) into (F.1) gives:

pt = α′pZt + θεpt−1 + (1− θ (1 + β))Et [εpt ] + βθEt [εpt+1] + κθEt [εyt ] (F.6a)

yt = α′yZt + δEΩ
t [εyt+1]− δσ

(
φπ (εpt − εpt−1)−

(
EΩ
t [εpt+1]− εpt

))
(F.6b)

By comparison to equation (F.3) and with some rearranging, this implies that:

A0εt = B1εt−1 + A1E
Ω
t [εt+1] + µÃ0

{
E
ε
t [εt]− εt

}
+ µÃ1

{
E
ε
t [εt+1]− EΩ

t [εt+1]
}

(F.7a)

where Eε
t [·] is the average expectation of those firms with noisy signals about εt and

Ã0 =
(1 + θ (1 + β)) θκ

0 0

 Ã1 =
βθ 0

0 0

 (F.7b)

For the bubble to feature in the solution, the last two terms in (F.7a) must equal zero.
But this can only happen if the share of agents with noisy signals (µ) falls to zero, or if
the variance of the noise they face (σε) falls to zero (so that expectation errors are zero),
both of which would imply universal full knowledge of the bubble, a contradiction.

42These are in addition to signals about ηt.
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F.2 Proof of proposition 7

Let S (·) be a set of selection matrices for extracting elements from Yt. For example,
S (xt) =

[
1 0 0 · · ·

]
so that S (xt)Yt = xt. Similarly, S

xt−1

ζt−2

 =
0 0 1 0 0 · · ·

0 0 0 1 0 · · ·

 so that

S

xt−1

ζt−2

Yt =
xt−1

ζt−2

. Further define the selection matrix T such that TYt = Et [Yt]. Note
that the matrix T amounts to a shift operator. Pre-multiplying a matrix by T will shift
its elements up 3 (1 +H) places. Pre-multiplying by T ′ will shift elements down by the
same amount. Post-multiplying by T shifts a matrix right, while post-multiplying by T ′

shifts a matrix left.

Substituting the candidate solution (53) into the equilibrium conditions (F.1) gives:

d′pYt = θS (pt−1)Yt + (1− θ (1 + β))d′pTYt + βθd′pFTYt + κθd′yTYt (F.8a)

d′yYt = δd′yFYt − δσ
(
φπ
(
d′pYt − S (pt−1)Yt

)
−
(
d′pFYt − d′pYt

)
− S (xt)Yt

)
(F.8b)

Stacking the two equations, dropping the Yt s and gathering like terms then gives:

D =
 0 θ

δσ δσφπ

 S (xt)
S (pt−1)

+
 0 0
−δσ (1 + φπ) 0

D +
(1− θ (1 + β)) κθ

0 0

DT
+
 0 0
δσ δ

DF +
βθ 0

0 0

DFT (F.9)

With a linear model, firms make use of a Kalman filter to form their expectations of Yt:

Et [Yt] = Et−1 [Yt] +
[
kx kp

]
︸ ︷︷ ︸

K

{
st (i)− Et−1 [st (i)]

}

= FTYt−1 +KS

 xt

pt−1

F (I − T )Yt−1 (F.10)

where K =
[
kx kp

]
is a matrix of Kalman gains applied against firms’ (noisy) signals

regarding xt and pt−1 respectively. The state vector Yt therefore follows an AR(1) process:

Yt = FYt−1 +Gut (F.11)

where the transition matrix satisfies:

F =



ρ 0 · · · 0 0 0 0 · · · 0 0 · · ·
D

(0)
x,0 D

(0)
p,0 · · · D

(0)
x,H D

(0)
p,H D

(1)
x,0 D

(1)
p,0 · · · D

(1)
x,H D

(1)
p,H · · ·

1 0 · · · 0 0 0 0 · · · 0 0 · · ·
0 I 0 0 0 0 · · · 0 0 · · ·

. . .

FT +KS

 xt

pt−1

F (I − T )


(F.12)
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Making use of the various selection matrices, this can be rewritten as:

F = Q+ T ′FT =
∞∑
k=0

(T ′)kQ (T )k (F.13a)

Q = S (xt)′ ρS (xt) + T ′kxρS (xt) (I − T ) + S
xt−1

ζt−2

′ S
 xt

ζt−1

+ S (pt−1)′ d′p + T ′kpd
′
p (I − T )

(F.13b)

For presentational simplicity, I assume for the remainder of this proof that H = 1
(that is, considering only solutions as functions of

[
xt ζ ′t−1 xt−1 ζ ′t−2

]′ and higher-order
expectations of the same). This nests the complete set of all backward-looking solutions
under full information (47) when firms’ idiosyncratic noise is taken to zero and, in any
event, the logic of the proof is identical for all H ≥ 1. In this case, I can rewrite D as:

D =
 dp,1 dp,2 dp,3 dp,4 dp,5 dp,6 dp,7 dp,8 dp,9 dp,10 dp,11 dp,12 · · ·
dy,1 dy,2 dy,3 dy,4 dy,5 dy,6 dy,7 dy,8 dy,9 dy,10 dy,11 dy,12 · · ·


︸ ︷︷ ︸

Sub-block (0)
︸ ︷︷ ︸

Sub-block (1)

(F.14)

where a rejection of backward-looking solutions must demonstrate that columns 4, 5, 6,
10, 11, 12, etc are all zeros. First, consider

[
dp,4 dp,5 dp,6

]
. Since (i) S (xt) and S (pt−1)

have zeros everywhere from column 3 onwards; (ii) the top row of coefficients in the
second and third terms of (F.9) are zero; and (iii) the fourth and fifth terms of (F.9) are
both post-multiplied by T (shifting them to the right), we must have:

D =
 dp,1 dp,2 dp,3 0 0 0 dp,7 dp,8 dp,9 dp,10 dp,11 dp,12 · · ·
dy,1 dy,2 dy,3 dy,4 dy,5 dy,6 dy,7 dy,8 dy,9 dy,10 dy,11 dy,12 · · ·

 (F.15)

Second, consider
[
dy,4 dy,5 dy,6

]
. If we define R ≡ DQ, which is the same dimension as D,

examination of (F.9) implies that
[
dy,4 dy,5 dy,6

]
= δ

[
ry,4 ry,5 ry,6

]
. But combining (F.15)

and (F.13), I obtain
[
ry,4 ry,5 ry,6

]
= d′y (sp + T ′kp)

[
dp,4 dp,5 dp,6

]
=
[
0 0 0

]
:43

D =
 dp,1 dp,2 dp,3 0 0 0 dp,7 dp,8 dp,9 dp,10 dp,11 dp,12 · · ·
dy,1 dy,2 dy,3 0 0 0 dy,7 dy,8 dy,9 dy,10 dy,11 dy,12 · · ·

 (F.16)

Third, consider
[
dp,10 dp,11 dp,12

]
. Combining (F.16), (F.13) and (F.9), it follows that these

must equal
[
(1− θ (1 + β)) κθ

] dp,4 dp,5 dp,6

dy,4 dy,5 dy,6

+ βθ
[
rp,4 rp,5 rp,6

]
, which given the earlier

results, must equal zero.

D =
 dp,1 dp,2 dp,3 0 0 0 dp,7 dp,8 dp,9 0 0 0 · · ·
dy,1 dy,2 dy,3 0 0 0 dy,7 dy,8 dy,9 dy,10 dy,11 dy,12 · · ·

 (F.17)

The same logic then continues to
[
dy,10 dy,11 dy,12

]
, followed by

[
dp,16 dp,17 dp,18

]
and

so forth. Each sub-block, thanks to the shifting by T k, depends on the values of[
dp,4 dp,5 dp,6

]
, which was established to be zeros above.

43Similarly, [rp,4 rp,5 rp,6
]

= d′p (sp + T ′kp)
[
dp,4 dp,5 dp,6

]
=
[
0 0 0

].
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G Non-zero trend inflation

Although appendix C derived the Phillips curve under ICK with non-zero trend inflation,
subsequent analysis was then done with an assumption of zero trend inflation. This
appendix presents the full solution with positive trend inflation.

G.1 The purely forward-looking solution under full info

Granting full information to price-setting firms in (C.27) - (C.32), the system can be
stacked and rearranged to:

A



pt−1

yt−1

ψt−1

φt−1

st−1


+ B



pt

yt

ψt

φt

st


+ CEΩ

t



pt+1

yt+1

ψt+1

φt+1

st+1


+Dxt = 0 (G.1)

where

B =



−1 0
(1−θΠε−1

)
(1−α)

1−α+αε

 −

(1−θΠε−1
)

(1−α)

1−α+αε

 0

−σ (1 + φπ) − (1 + σφy) 0 0 0(
1− βθΠ

ε
1−α

) (
ε

1−α

) (
σ +

(
1− βθΠ

ε
1−α

) (
1

1−α

) (
1 + 1

ψ

))
−1 0

(
1− βθΠ

ε
1−α

)
1
ψ(

1− βθΠε−1) (ε− 1)
(
1− βθΠε−1 (1− σ)

)
0 −1 0(

ε
1−α

)(
θ

1−θΠε−1

)(
Π

ε
1−α − Πε−1

)
0 0 0 −1


(G.2)

A =



θΠε−1 0 0 0 0
σφπ 0 0 0 0

0 0 0 0 0
0 0 0 0 0

−
(

ε
1−α

)(
θ

1−θΠε−1

)(
Π

ε
1−α − Πε−1

)
0 0 0 θΠ

ε
1−α


C =



0 0 0 0 0
σ 1 0 0 0
0 −σβθΠ

ε
1−α βθΠ

ε
1−α 0 0

0 −σβθΠε−1 0 βθΠε−1 0
0 0 0 0 0


D =



0
−σ
0
0
0


(G.3)

The purely forward-looking solution may then be obtained via any of the usual techniques,
such as the linear time iteration of Rendahl (2017). Note that finding the purely forward
solution does not automatically imply that it is determinate under full information.

G.2 The purely forward-looking solution under ICK

With non-zero trend inflation, the purely forward-looking solution under full information
is a function of three variables: xt, pt−1 and st−1. Under ICK, the full state is:

Zt ≡

 ηt
η̃t|t

 = AZt−1 +But (G.4)
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where ηt ≡
[
xt pt−1 st−1

]′
and η̃t|t ≡ (1− ϕ)∑∞k=1 ϕ

k−1η
(k)
t|t for some ϕ ∈ (−1, 1) to be

determined.

G.2.1 The reduced-form coefficients

Let the purely forward-looking solution under full information be given by:

pt = γ xt + λ pt−1 + δ st−1 (G.5)

As with the model with zero trend inflation, since η̃t|t = ηt under full information and η̃t|t
approaches ηt smoothly as σv → 0, simple inspection dictates that the purely forward-
looking solution for the price level under ICK is:

pt = θΠε−1
pt−1 + γ x̃t|t +

(
λ− θΠε−1)

p̃t−1|t + δ s̃t−1|t (G.6)

Combining this with equation (C.32), the solution for the level of price dispersion is then:

st = −
(

εθ

1− α

)(
Π

ε
1−α − Πε−1

)
pt−1

+
(
θΠ

ε
1−α

)
st−1

+
(

γ

1− θΠε−1

)(
εθ

1− α

)(
Π

ε
1−α − Πε−1

)
x̃t|t

+
λ− θΠε−1

1− θΠε−1

( εθ

1− α

)(
Π

ε
1−α − Πε−1

)
p̃t−1|t

+
(

δ

1− θΠε−1

)(
εθ

1− α

)(
Π

ε
1−α − Πε−1

)
s̃t−1|t (G.7)

G.2.2 The law of motion

The law of motion for Zt is given by:

xt

pt−1

st−1

x̃t|t

p̃t−1|t

s̃t−1|t


=



ρ 0 0 0 0 0
a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66





xt−1

pt−2

st−2

x̃t−1|t−1

p̃t−2|t−1

s̃t−2|t−1


+



1
0
0
b4

b5

b6


ut (G.8)

where I have filled in the top row from the law of motion for xt. The second and third
rows are given by equations (G.6) and (G.7) respectively. Next, from their definitions:

x̃t|t

p̃t−1|t

s̃t−1|t

 =


(1− ϕ) 0 0 ϕ 0 0

0 (1− ϕ) 0 0 ϕ 0
0 0 (1− ϕ) 0 0 ϕ


︸ ︷︷ ︸

Φ

Et [Zt] (G.9)
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or, rearranging,

Et


x̃t|t

p̃t−1|t

s̃t−1|t

 =


1
ϕ

(
x̃t|t − (1− ϕ)Et [xt]

)
1
ϕ

(
p̃t−1|t − (1− ϕ)Et [pt−1]

)
1
ϕ

(
s̃t−1|t − (1− ϕ)Et [st−1]

)
 (G.10)

Firms’ average Kalman filter for Zt is:

Et [Zt] = AEt−1 [Zt−1] +M
{
N (AZt−1 +But)−NAEt−1 [Zt−1]

}
(G.11)

where M =
[
mx mp ms

]
is a (6× 3) Kalman gain matrix to be determined and N

selects ηt from Zt so that firm i’s signal is st (i) = NZt + vt (i). Gathering like terms
then gives:


x̃t|t

p̃t−1|t

s̃t−1|t

 = Φ
{

(I −MN)AEt−1 [Zt−1] +MNAZt−1 +MNBut
}

(G.12)

Using (G.10) to expand Et−1 [Zt−1] gives:


x̃t|t

p̃t−1|t

s̃t−1|t

 = Φ


(A−MNA)



Et−1 [xt−1]
Et−1 [pt−2]
Et−1 [st−2]

1
ϕ

(
x̃t−1|t−1 − (1− ϕ)Et−1 [xt−1]

)
1
ϕ

(
p̃t−2|t−1 − (1− ϕ)Et−1 [pt−2]

)
1
ϕ

(
s̃t−2|t−1 − (1− ϕ)Et−1 [st−2]

)


+MNAZt−1 +MNBut


(G.13)

Note that NA and NB are given by:

NA =


ρ 0 0 0 0 0
0 θ 0 γ (λ− θ) δ

0 a32 a33 a34 a35 a36

 NB =


1
0
0

 (G.14)
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with the third row already known from equation (G.7), but too complicated to fill in here
(I have filled in the zero elements). Equation (G.13) therefore expands as:


x̃t|t

p̃t−1|t

s̃t−1|t

 = Φ





ρ

−γ
(

1−ϕ
ϕ

)
−a34

(
1−ϕ
ϕ

)
a41 − a44

(
1−ϕ
ϕ

)
a51 − a54

(
1−ϕ
ϕ

)
a61 − a64

(
1−ϕ
ϕ

)


−mxρ

+
(

1−ϕ
ϕ

)
(mpγ +msa34)


Et−1 [xt−1]

+ Φ





0
θ − (λ− θ)

(
1−ϕ
ϕ

)
a32 − a35

(
1−ϕ
ϕ

)
a42 − a45

(
1−ϕ
ϕ

)
a52 − a55

(
1−ϕ
ϕ

)
a62 − a65

(
1−ϕ
ϕ

)


− (mpθ +msa32)
+
(

1−ϕ
ϕ

)
(mp (λ− θ) +msa35)


Et−1 [pt−2]

+ Φ





0
−δ

(
1−ϕ
ϕ

)
a33 − a36

(
1−ϕ
ϕ

)
a43 − a46

(
1−ϕ
ϕ

)
a53 − a56

(
1−ϕ
ϕ

)
a63 − a66

(
1−ϕ
ϕ

)


−msa33

+
(

1−ϕ
ϕ

)
(mpδ +msa36)


Et−1 [st−2]

+ Φ



{mxρ} xt−1

+ {mpθ +msa32} pt−2

+ {msa33} st−2

+
{

1
ϕ
a∗4 −

(
1−ϕ
ϕ

)
(mpγ +msa34)

}
x̃t−1|t−1

+
{

1
ϕ
a∗5 −

(
1−ϕ
ϕ

)
(mp (λ− θ) +msa35)

}
p̃t−2|t−1

+
{

1
ϕ
a∗6 −

(
1−ϕ
ϕ

)
(mpδ +msa36)

}
s̃t−2|t−1

+ {mx} ut


(G.15)

where a∗4, a∗5 and a∗6 are the 4th, 5th and 6th columns of A respectively. The following
elements of A and B can therefore be read off immediately:


a41 a42 a43

a51 a52 a53

a61 a62 a63

 = Φ
[
mxρ (mpθ +msa32) msa33

]
(G.16)


b4

b5

b6

 = Φmx (G.17)
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while the terms against x̃t−1|t−1, p̃t−2|t−1 and s̃t−2|t−1 on the last line of (G.15) imply that:


0 0 0
γ (λ− θ) δ

a34 a35 a36

 = Φ
[
(mpγ +msa34) (mp (λ− θ) +msa35) (mpδ +msa36)

]
(G.18)

Setting the terms against Et−1 [xt−1], Et−1 [pt−2] and Et−1 [st−2] to zero, and combined
with the above, then arrives at:

a44 a45 a46

a54 a55 a56

a64 a65 a66

 =


ρ 0 0
γ λ δ

a34 (a32 + a35) (a33 + a36)

−

a41 a42 a43

a51 a52 a53

a61 a62 a63

 (G.19)

G.2.3 The equilibrium degree of strategic complementarity

Since lagged values of pt feature in Zt, expectations of pt+j are given by:

Et [pt+j] = a2∗A
j−1

(
e2Et [pt] + J2AEt [Zt]

)
(G.20)

where ai∗ is the ith row of A, ei is a column vector of zeros with a one in the ith row and
Ji is an identity matrix with the ith element of the lead diagonals set to zero.

Substitute the Taylor-type rule into the Euler equation:

(1 + σφy) yt = EΩ
t [yt+1] + σ

(
φπpt−1 − (1 + φπ) pt + EΩ

t [pt+1] + xt
)

(G.21)

Stacking the variables that must be forecast other than the price level, I have:
(1 + σφy) 0 0(

1− βθΠ
ε

1−α (ω − σ)
)

1 0(
1− βθΠε−1 (1− σ)

)
0 1



yt

ψt

φt

 =


1 0 0

−σβθΠ
ε

1−α βθΠ
ε

1−α 0
−σβθΠε−1 0 βθΠε−1



yt+1

ψt+1

φt+1



+


−σ 0
0

(
1− βθΠ

ε
1−α

)
1
ψ

0 0


xt
st



+


σφπ −σ (1 + φπ) σ

0
(

1− βθΠ
ε

1−α

) (
ε

1−α

)
0

0
(
1− βθΠε−1) (ε− 1) 0



pt−1

pt

pt+1


or, rearranging slightly:
yt

ψt

φt

 = F


yt+1

ψt+1

φt+1

+G

xt
st

+H


pt−1

pt

pt+1

 (G.22)
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where

F =



(
1

1+σφy

)
0 0

−σβθΠ
ε

1−α −
(

1−βθΠ
ε

1−α (ω−σ)
1+σφy

)
βθΠ

ε
1−α 0

−σβθΠε−1 −
(

1−βθΠε−1(1−σ)
1+σφy

)
0 βθΠε−1

 (G.23)

G =


−
(

σ
1+σφy

)
0

σ
(

1−βθΠ
ε

1−α (ω−σ)
1+σφy

) (
1− βθΠ

ε
1−α

)
1
ψ

σ
(

1−βθΠε−1(1−σ)
1+σφy

)
0

 (G.24)

H =



(
σφπ

1+σφy

) (
−σ(1+φπ)

1+σφy

) (
σ

1+σφy

)
−σφπ

(
1−βθΠ

ε
1−α (ω−σ)

1+σφy

) (
1− βθΠ

ε
1−α

) (
ε

1−α

)
+ σ (1 + φπ)

(
1−βθΠ

ε
1−α (ω−σ)

1+σφy

)
−σ

(
1−βθΠ

ε
1−α (ω−σ)

1+σφy

)
−σφπ

(
1−βθΠε−1(1−σ)

1+σφy

) (
1− βθΠε−1) (ε− 1) + σ (1 + φπ)

(
1−βθΠε−1(1−σ)

1+σφy

)
−σ

(
1−βθΠε−1(1−σ)

1+σφy

)


(G.25)

and where the backward-looking variables follow:

xt
st

 =
ρ 0

0 θΠ
ε

1−α

xt−1

st−1

+
(

ε

1− α

)(
θ

1− θΠε−1

)(
Π

ε
1−α − Πε−1

) 0 0 0
−1 1 0


︸ ︷︷ ︸

D


pt−1

pt

pt+1

+
1

0

ut
(G.26)

so that

Et

 xt+j

st+j

 =

ρj 0

0
(
θΠ

ε
1−α

)j+1

Et

 xt

st−1

+
(
θΠ

ε
1−α

)j
DEt


pt+j−1

pt+j

pt+j+1

 (G.27)

Taking the period-t average expectation of (G.22) and substituting it forward gives:

Et


yt

ψt

φt

 =
∞∑
j=0

F jEt

G
xt+j
st+j

+H


pt+j−1

pt+j

pt+j+1


 (G.28)

Substituting in for the backward-looking variables then gives:

Et


yt

ψt

φt

 =
∞∑
j=0

F j

G
ρj 0

0
(
θΠ

ε
1−α

)j+1

Et

 xt

st−1

+
(
G
(
θΠ

ε
1−α

)j
D +H

)
Et


pt+j−1

pt+j

pt+j+1




Noting that xt and st−1 are part of Zt and using equation (G.20) to substitute for the

A28 / A30



forward price levels, I obtain:

Et


yt

ψt

φt

 =
∞∑
j=0

F jG

ρj 0 0 0 0 0

0 0
(
θΠ

ε
1−α

)j+1
0 0 0

Et [Zt]

+
(
G
(
θΠ

ε
1−α

)j
D +H

)
[
0 1 0 0 0 0

]
Et [Zt]

Et [pt]
a2∗

(
e2Et [pt] + J2AEt [Zt]

)


+ F

(
G
(
θΠ

ε
1−α

)j
D +H

)
Et [pt]

a2∗
(
e2Et [pt] + J2AEt [Zt]

)
a2∗A

(
e2Et [pt] + J2AEt [Zt]

)


+
∞∑
j=2

F j

(
G
(
θΠ

ε
1−α

)j
D +H

)
a2∗A

j−2
(
e2Et [pt] + J2AEt [Zt]

)
a2∗A

j−1
(
e2Et [pt] + J2AEt [Zt]

)
a2∗A

j
(
e2Et [pt] + J2AEt [Zt]

)


Finally, gathering terms and combining this with equation (C.29) obtains:

pt = θΠε−1
pt−1 + d′Et [Zt] + ϕEt [pt] (G.29)

where

ϕ =

(
1− θΠε−1) (1− α)

1− α + αε

[0 1 −1
]



(GD +H)


0
1
θ



+F
(
G
(
θΠ

ε
1−α

)
D +H

)
1
θ

a2∗Ae2



+∑∞
j=2 F

j

(
G
(
θΠ

ε
1−α

)j
D +H

)
a2∗A

j−2

a2∗A
j−1

a2∗A
j

 e2



(G.30)

d′ =

(
1− θΠε−1) (1− α)

1− α + αε

[0 1 −1
]



∑∞
j=0 F

jG

ρj 0 0 0 0 0

0 0
(
θΠ

ε
1−α

)j+1
0 0 0



+ (GD +H)


0 1 0 0 0 0
0 0 0 0 0 0

a2∗J2A



+F
(
G
(
θΠ

ε
1−α

)
D +H

)
0 0 0 0 0 0

a2∗J2A

a2∗AJ2A



+∑∞
j=2 F

j

(
G
(
θΠ

ε
1−α

)j
D +H

)
a2∗A

j−2

a2∗A
j−1

a2∗A
j

 J2A



(G.31)

The coefficient ϕ is the equilibrium degree of strategic complementarity in firms’ price-
setting problem, taking into account the full effect of general equilibrium and the entire
expected path of the price level into the future.
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G.3 Uniqueness

The proof of uniqueness when the model has non-zero trend inflation proceeds identically
to that under zero trend inflation.

So long as at least some firms observe any candidate bubble with at least some
idiosyncratic noise, then the solution cannot feature a rational bubble.

For backward-looking solutions, once the state is defined as:

Yt ≡
[
xt ζ ′t−1 xt−1 ζ ′t−2 . . . xt−H ζ ′t−H−1 Et [Yt]′

]′
(G.32)

so that a solution will be of the form:

Yt = FYt−1 +Gut (G.33a)

ζt = DYt (G.33b)

Stacking the system produces an expression in the following form for D:

D = A
 S (xt)
S (ζt−1)

+ B0D + B1DF + C0DT + C1DFT (G.34)

where S (ζt−1) and T are a selection matrices such that S (ζt−1)Yt = ζt−1 from Yt and
TYt = Et [Yt]; and A, B0, B1, C0 and C1 are matrices of structural parameters.

With firms subject to ICK, the rows of B0 and B1 relating to the price level will be all
zeros. Since S (xt) and S (xt) have only zeros in columns after ζt−1 and post-multiplying
a matrix by T shifts its elements one ‘block’ to the right, the coefficients of D for the price
level against

[
xt−1 ζ ′t−2 . . . xt−H

]
will all be zero. This then implies that coefficients

for other endogenous variables against them will also be zero, and subequently that the
same applies for expectations of the same.
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