Peering into the mist: social learning over an opaque observation network

John Barrdear¹

¹Bank of England and CfM

May 2014

Disclaimer: The views expressed are those of the author and do not necessarily reflect the views of the Bank of England, MPC or FPC.

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ 三回 めんゆ

Can we incorporate network learning in a macro model with dispersed information?

Network learning is a natural extension of models of incomplete information and strategic interaction:

Firms' price-setting.

- Firms' vacancy posting.
- Households with complementarity in consumption.
- Asset pricing with communication between traders.

The problem

Three of the defining features of macroeconomic models ...

- Agents act repeatedly.
- Agents update their beliefs in a Bayesian and model-consistent way.
- Agents act strategically (payoffs are affected by others' actions).

... are precisely those that prevent comprehensive analysis of network learning.

Who's afraid of infinite state vectors?

- k*: The number of higher-order expectations to include
- p: The number of relevant compound expectations: linear combinations of individuals' expectations
- The dispersed info and global games literatures set p = 1 (the simple average) and place decreasing weight on higher-order beliefs
- ▶ For network learning, *p* is the number of agents
- For macro models, the number of agents is infinite

This paper (in English)

- Bayesian learning about a hidden state
- Agents
 - receive public and private signals
 - observe each others' actions over an exogenous, directed network
- Repeated, simultaneous actions
- Strategic complementarity
- Key assumption: the network is opaque

I solve for the law of motion for the full hierarchy of expectations and show that an arbitrarily accurate finite approximation may be found.

- Herding: aggregate expectations overshoot the truth
- Transitory idiosyncratic shocks have persistent aggregate effects

(A small subset of) previous literature

- Network learning
 - Dropping repeated actions: Banerjee (1992) ... Acemoglu, Dahleh, Lobel and Ozdaglar (2011)
 - Dropping Bayesian updating: DeGroot (1974) ... DeMarzo, Vayanos and Zwiebel (2003); Golub & Jackson (2010)
 - Dropping strategic concerns: Gale & Kariv (2003); Mueller-Frank (2013)
- ▶ Global games: Townsend (1983) ... Morris & Shin (2002) ...
- Dispersed information: Woodford (2003); Nimark (2008, 2011); Lorenzoni (2009); Graham (2011)
- Idiosyncratic origins for aggregate volatility: Gabaix (2011); Acemoglu, Carvalho, Ozdaglar & Tahbaz-Saleh (2012)

Outline

Introduction

A sketch of the theory

An illustrative example

Conclusions

The setup

Everything is linear

A continuum of agents, indexed $i \in [0, 1]$

The hidden *underlying state* is AR(1): $\mathbf{x}_t = A\mathbf{x}_{t-1} + P\mathbf{u}_t$

The *full state* includes, at a minimum, the hierarchy of simple-average expectations about the underlying state: $\overline{\mathbf{x}}_{t|t}^{(0:\infty)} \in X_t$

Agents' common decision rule: $g_t(i) = \lambda'_1 E_t(i) [X_t] + \lambda'_2 \mathbf{x}_t + \lambda'_3 \mathbf{v}_t(i)$

Example (Morris & Shin):

$$g_t(i) = (1 - \beta) E_t(i) [x_t] + \beta E_t(i) [\overline{g}_t] = (1 - \beta) \begin{bmatrix} 1 & \beta & \beta^2 & \cdots \end{bmatrix} E_t(i) \begin{bmatrix} \overline{x}_t^{(0:\infty)} \end{bmatrix}$$

Agents' information

Agents observe public and (conditionally independent) private signals

$$m{s}_{t}^{p}(i) = D_{1}m{x}_{t} + D_{2}X_{t-1} + R_{1}m{v}_{t}(i) + R_{2}m{e}_{t} + R_{3}m{z}_{t-1}$$

 $v_t(i)$ are agent *i*'s idiosyncratic shocks, e_t are public noise shocks and z_t are network shocks: weighted sums of idiosyncratic shocks.

Agents also observe social signals

$$\boldsymbol{s}_{t}^{s}(i) = \boldsymbol{g}_{t-1} \left(\delta_{t-1} \left(i \right) \right)$$

= $\lambda_{1}^{\prime} \boldsymbol{E}_{t-1} \left(\delta_{t-1} \left(i \right) \right) \left[\boldsymbol{X}_{t-1} \right] + \lambda_{2}^{\prime} \boldsymbol{x}_{t-1} + \lambda_{3}^{\prime} \boldsymbol{v}_{t-1} \left(\delta_{t-1} \left(i \right) \right)$

 $\delta_t(i)$ maps agent *i* onto their observation target(s), the period-*t* action of whom will be observed by *i* (in period t + 1)

The network is opaque: key assumptions

The distribution across observation targets is:

- ▶ i.i.d.
- common knowledge
- asymptotically non-uniform

Let Φ_n be a discrete distribution with p.m.f. $\phi_n(i)$ and let $\zeta_n \equiv \sum_{i=1}^n \phi_n(i)^2$ be its Herfindahl index. Φ_n is asymptotically non-uniform if:

•
$$\lim_{n\to\infty} \phi_n(i) = 0 \ \forall i$$
; and

•
$$\lim_{n\to\infty} \zeta_n = \zeta^*$$
 where $\zeta^* \in (0, 1)$.

Social networks have non-uniform distributions

The degree sequences of most social networks are well approximated with a power law distribution (Jackson, 2008)

$$\phi_n(i) = c_n i^{-\gamma}$$
 where $\gamma > 1 \Rightarrow \zeta^* \in (0, 1)$

What this buys #1: a transformed problem Linear + i.i.d. + common knowledge means:

$$E_{t}(i) [\mathbf{v}_{t}(\delta_{t}(i))] = \int \phi(j) E_{t}(i) [\mathbf{v}_{t}(j)] dj$$
$$= E_{t}(i) \left[\int \phi(j) \mathbf{v}_{t}(j) dj \right]$$
$$= E_{t}(i) \left[\int \mathbf{v}_{t}(\delta_{t}(j)) dj \right]$$
$$= E_{t}(i) \left[\mathbf{\tilde{v}}_{t} \right]$$

$$E_{t}(i) \left[\mathbf{v}_{t} \left(\delta_{t} \left(\delta_{t} \left(i \right) \right) \right) \right] = E_{t}(i) \begin{bmatrix} 2 \approx \\ \mathbf{v}_{t} \end{bmatrix}$$
$$E_{t}(i) \left[\mathbf{v}_{t} \left(\delta_{t} \left(\delta_{t} \left(\delta_{t} \left(i \right) \right) \right) \right) \right] = E_{t}(i) \begin{bmatrix} 3 \approx \\ \mathbf{v}_{t} \end{bmatrix}$$

What this buys #1: a transformed problem Linear + i.i.d. + common knowledge means:

$$E_{t}(i) [\mathbf{v}_{t}(\delta_{t}(i))] = \int \phi(j) E_{t}(i) [\mathbf{v}_{t}(j)] dj$$
$$= E_{t}(i) \left[\int \phi(j) \mathbf{v}_{t}(j) dj \right]$$
$$= E_{t}(i) \left[\int \mathbf{v}_{t}(\delta_{t}(j)) dj \right]$$
$$= E_{t}(i) \left[\mathbf{\tilde{v}}_{t} \right]$$

$$E_{t}(i) \left[\mathbf{v}_{t} \left(\delta_{t} \left(\delta_{t} \left(i \right) \right) \right) \right] = E_{t}(i) \begin{bmatrix} 2i \\ \mathbf{v}_{t} \end{bmatrix}$$
$$E_{t}(i) \left[\mathbf{v}_{t} \left(\delta_{t} \left(\delta_{t} \left(\delta_{t} \left(i \right) \right) \right) \right) \right] = E_{t}(i) \begin{bmatrix} 3i \\ \mathbf{v}_{t} \end{bmatrix}$$

٠

What this buys #2: we break the law of large numbers

An asymptotically non-uniform distribution means:

$$Var\begin{bmatrix}\mathbf{i} \\ \mathbf{v} \\ t\end{bmatrix} = Var\begin{bmatrix}\int \phi(j) \mathbf{v}_t(j) dj\end{bmatrix}$$
$$= \int Var[\phi(j) \mathbf{v}_t(j)] dj$$
$$= \int \phi(j)^2 \Sigma_{vv} dj$$
$$= \zeta^* \Sigma_{vv} \neq \mathbf{0}$$

Define network shocks: $\boldsymbol{z}_t \equiv$

$$Var\begin{bmatrix} {}^{p_{i}\sim} \\ \mathbf{v}_{t} \end{bmatrix} = (1 - (1 - \zeta^{*})^{p}) \Sigma_{vv}$$
$$Cov\begin{bmatrix} {}^{p_{i}\sim} \\ \mathbf{v}_{t}, \mathbf{v}_{t} \end{bmatrix} = Var\begin{bmatrix} {}^{p_{i}\sim} \\ \mathbf{v}_{t} \end{bmatrix} \forall p < r$$

What this buys #2: we break the law of large numbers

An asymptotically non-uniform distribution means:

$$Var \begin{bmatrix} \mathbf{1}:\\ \mathbf{v}_{t} \end{bmatrix} = Var \begin{bmatrix} \int \phi(j) \, \mathbf{v}_{t}(j) \, dj \end{bmatrix}$$
$$= \int Var [\phi(j) \, \mathbf{v}_{t}(j)] \, dj$$
$$= \int \phi(j)^{2} \, \Sigma_{vv} \, dj$$
$$= \zeta^{*} \Sigma_{vv} \neq \mathbf{0}$$

Define network shocks: $\boldsymbol{z}_t \equiv$

$$\begin{array}{c} 1:\sim \\ \mathbf{V}_t \\ 2:\sim \\ \mathbf{V}_t \\ \vdots \end{array}$$

$$\begin{aligned} & \textit{Var}\left[\overset{\scriptscriptstyle p:\sim}{\mathbf{v}}_{t}\right] = \left(1 - \left(1 - \zeta^{*}\right)^{p}\right) \Sigma_{vv} \\ & \textit{Cov}\left[\overset{\scriptscriptstyle p:\sim}{\mathbf{v}}_{t}, \overset{\scriptscriptstyle r:\sim}{\mathbf{v}}_{t}\right] = \textit{Var}\left[\overset{\scriptscriptstyle p:\sim}{\mathbf{v}}_{t}\right] \; \forall p < r \end{aligned}$$

What this buys #2: we break the law of large numbers

An asymptotically non-uniform distribution means:

$$Var \begin{bmatrix} \mathbf{i} \\ \mathbf{v} \\ t \end{bmatrix} = Var \begin{bmatrix} \int \phi(j) \mathbf{v}_t(j) dj \end{bmatrix}$$
$$= \int Var [\phi(j) \mathbf{v}_t(j)] dj$$
$$= \int \phi(j)^2 \Sigma_{vv} dj$$
$$= \zeta^* \Sigma_{vv} \neq \mathbf{0}$$

Define network shocks: $\boldsymbol{z}_t \equiv$

$$\begin{bmatrix} 1: \sim \\ \mathbf{V}_t \\ 2: \sim \\ \mathbf{V}_t \\ \vdots \end{bmatrix}$$

$$\begin{aligned} & \textit{Var}\left[\overset{\scriptscriptstyle p:\sim}{\mathbf{v}}_{t}\right] = \left(1 - (1 - \zeta^{*})^{p}\right) \Sigma_{vv} \\ & \textit{Cov}\left[\overset{\scriptscriptstyle p:\sim}{\mathbf{v}}_{t}, \overset{\scriptscriptstyle r:\sim}{\mathbf{v}}_{t}\right] = \textit{Var}\left[\overset{\scriptscriptstyle p:\sim}{\mathbf{v}}_{t}\right] \; \forall p < r \end{aligned}$$

The main result

The full hierarchy of expectations is defined recursively and follows an ARMA(1,1) process:

$$\boldsymbol{X}_{t} \equiv \begin{bmatrix} \boldsymbol{X}_{t} \\ \overline{E}_{t} [\boldsymbol{X}_{t}] \\ \vdots \\ \overline{E}_{t} [\boldsymbol{X}_{t}] \\ \vdots \end{bmatrix} = F\boldsymbol{X}_{t-1} + G_{1}\boldsymbol{u}_{t} + G_{2}\boldsymbol{z}_{t} + G_{3}\boldsymbol{e}_{t} + G_{4}\boldsymbol{z}_{t-1}$$

An arbitrarily accurate approximation is obtained by defining cut-offs:

- ▶ *k**: Number of higher *orders* to include (how deep into the recursion)
- p*: Number of higher weights to include (how deep into the network)

More detail

Outline

Introduction

A sketch of the theory

An illustrative example

Conclusions

A simplified example using Morris & Shin preferences

$$g_t(i) = (1 - \beta) E_t(i) [x_t] + \beta E_t(i) [\overline{g}_t]$$

Uni-variate state: $x_t = \rho x_{t-1} + u_t$ $u_t \sim N(0, \sigma_u^2)$ Private signal: $s_t^{\rho}(i) = x_t + v_t(i)$ $v_t(i) \sim N(0, \sigma_v^2)$

Result:

 $\begin{aligned} x_{t} &= \rho \, x_{t-1} &+ u_{t} \\ \overline{E}_{t} \left[X_{t} \right] &= B \, x_{t-1} + C \, \overline{E}_{t-1} \left[X_{t-1} \right] + D^{1:\widetilde{E}}_{t-1} \left[X_{t-1} \right] + Hu_{t} \\ \overset{\text{tree}}{E}_{t} \left[X_{t} \right] &= B \, x_{t-1} + C^{1:\widetilde{E}}_{t-1} \left[X_{t-1} \right] + D^{2:\widetilde{E}}_{t-1} \left[X_{t-1} \right] + Hu_{t} + Q^{1:\widetilde{v}}_{t} \\ \overset{\text{tree}}{E}_{t} \left[X_{t} \right] &= B \, x_{t-1} + C^{2:\widetilde{e}}_{t-1} \left[X_{t-1} \right] + D^{3:\widetilde{e}}_{t-1} \left[X_{t-1} \right] + Hu_{t} + Q^{2:\widetilde{v}}_{t} \end{aligned}$

A simplified example using Morris & Shin preferences

$$g_t(i) = (1 - \beta) E_t(i) [x_t] + \beta E_t(i) [\overline{g}_t]$$

Uni-variate state: $x_t = \rho x_{t-1} + u_t$ $u_t \sim N(0, \sigma_u^2)$ Private signal: $s_t^{\rho}(i) = x_t + v_t(i)$ $v_t(i) \sim N(0, \sigma_v^2)$

Result:

$$\begin{aligned} x_{t} &= \rho \, x_{t-1} + u_{t} \\ \overline{E}_{t} \left[X_{t} \right] &= B \, x_{t-1} + C \, \overline{E}_{t-1} \left[X_{t-1} \right] + D^{1:\widetilde{E}}_{t-1} \left[X_{t-1} \right] + H u_{t} \\ \overset{\text{le}}{E}_{t} \left[X_{t} \right] &= B \, x_{t-1} + C^{1:\widetilde{E}}_{t-1} \left[X_{t-1} \right] + D^{2:\widetilde{E}}_{t-1} \left[X_{t-1} \right] + H u_{t} + Q^{1:\widetilde{v}}_{t} \\ \overset{\text{le}}{E}_{t} \left[X_{t} \right] &= B \, x_{t-1} + C^{2:\widetilde{E}}_{t-1} \left[X_{t-1} \right] + D^{3:\widetilde{E}}_{t-1} \left[X_{t-1} \right] + H u_{t} + Q^{2:\widetilde{v}}_{t} \\ \vdots \end{aligned}$$

A "true" aggregate shock #1

The hierarchy of simple-average expectations $(\overline{x}_{t|t}^{(0:\infty)})$ following a one standard deviation shock to the underlying state

A "true" aggregate shock #2

Varying the number of other agents observed (q)

A network shock #1

The hierarchy of simple-average expectations $(\overline{x}_{t|t}^{(0:\infty)})$ following a one standard deviation network shock

Implemented as a one standard deviation shock to \tilde{v}_t and the corresponding conditional expected value for higher-weighted averages with agents each observing two competitors (q = 2).

A network shock #2

Recall that
$$Var \begin{bmatrix} 1 & \widetilde{\mathbf{v}}_t \end{bmatrix} = \zeta^* \sigma_v^2$$

Adding a (lagged) public signal

Scenario 1:
$$s_t^{pub} = \mathbf{1}' \overline{x}_{t-1|t-1}^{(0:\infty)} + e_t$$

Scenario 2: $s_t^{pub} = \mathbf{1}' X_{t-1} + e_t$

21/25

Outline

Introduction

A sketch of the theory

An illustrative example

Conclusions

Conclusions

- Network opacity lets us to combine (a) repeated actions; (b) rational expectations; and (c) strategic complementarity
- ► Underlying state follows AR(1) \Rightarrow Full hierarchy follows ARMA(1,1) with $\lambda_1(F) > \lambda_1(A)$
- Herding: network learning causes aggregate beliefs to overshoot the truth following a shock to the underlying state
- Transitory idiosyncratic shocks have aggregate effects (b/c of asymptotic non-uniformity) that are persistent (b/c of recursive learning + herding)
- The model is readily nested into wider GE models of the economy

Extra slides

More detail: the Kalman filter

$$E_{t}(i) [X_{t}] = E_{t-1}(i) [X_{t}] + K_{t} \underbrace{\left(\mathbf{s}_{t}(i) - E_{t-1}(i) [\mathbf{s}_{t}(i)]\right)}_{\mathbf{s}_{t|t-1}^{\text{err}}(i)}$$
$$K_{t} = Cov(X_{t}, \mathbf{s}_{t|t-1}^{\text{err}}(i)) \left[Var\left(\mathbf{s}_{t|t-1}^{\text{err}}(i)\right) \right]^{-1}$$