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Can we incorporate network learning in a macro model
with dispersed information?

Network learning is a natural extension of models of incomplete
information and strategic interaction:

I Firms’ price-setting.

I Firms’ vacancy posting.

I Households with complementarity in consumption.

I Asset pricing with communication between traders.
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The problem

Three of the defining features of macroeconomic models ...

I Agents act repeatedly.

I Agents update their beliefs in a Bayesian and model-consistent way.

I Agents act strategically (payoffs are affected by others’ actions).

... are precisely those that prevent comprehensive analysis of network
learning.
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Who’s afraid of infinite state vectors?
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1000 I k∗: The number of higher-order
expectations to include

I p: The number of relevant
compound expectations: linear
combinations of individuals’
expectations

I The dispersed info and global games literatures set p = 1 (the
simple average) and place decreasing weight on higher-order beliefs

I For network learning, p is the number of agents

I For macro models, the number of agents is infinite
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This paper (in English)

I Bayesian learning about a hidden state
I Agents

I receive public and private signals
I observe each others’ actions over an exogenous, directed network

I Repeated, simultaneous actions
I Strategic complementarity
I Key assumption: the network is opaque

I solve for the law of motion for the full hierarchy of expectations and
show that an arbitrarily accurate finite approximation may be found.

I Herding: aggregate expectations overshoot the truth
I Transitory idiosyncratic shocks have persistent aggregate effects
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(A small subset of) previous literature
I Network learning

I Dropping repeated actions: Banerjee (1992) ... Acemoglu, Dahleh, Lobel and
Ozdaglar (2011)

I Dropping Bayesian updating: DeGroot (1974) ... DeMarzo, Vayanos and
Zwiebel (2003); Golub & Jackson (2010)

I Dropping strategic concerns: Gale & Kariv (2003); Mueller-Frank (2013)

I Global games: Townsend (1983) ... Morris & Shin (2002) ...

I Dispersed information: Woodford (2003); Nimark (2008, 2011);
Lorenzoni (2009); Graham (2011)

I Idiosyncratic origins for aggregate volatility: Gabaix (2011);
Acemoglu, Carvalho, Ozdaglar & Tahbaz-Saleh (2012)
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The setup
Everything is linear

A continuum of agents, indexed i ∈ [0,1]

The hidden underlying state is AR(1): x t = Ax t−1 + Put

The full state includes, at a minimum, the hierarchy of simple-average
expectations about the underlying state: x (0:∞)

t |t ∈ Xt

Agents’ common decision rule: gt (i) = λ′1Et (i) [Xt ] + λ′2x t + λ′3v t (i)

Example (Morris & Shin):

gt (i) = (1− β) Et (i) [xt ] + βEt (i) [gt ]

= (1− β)
[
1 β β2 · · ·

]
Et (i)

[
x (0:∞)

t

]
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Agents’ information

Agents observe public and (conditionally independent) private signals

sp
t (i) = D1x t + D2Xt−1 + R1v t (i) + R2et + R3z t−1

v t (i) are agent i ’s idiosyncratic shocks, et are public noise shocks and
z t are network shocks: weighted sums of idiosyncratic shocks.

Agents also observe social signals

ss
t (i) = gt−1 (δt−1 (i))

= λ′1Et−1 (δt−1 (i)) [Xt−1] + λ′2x t−1 + λ′3v t−1 (δt−1 (i))

δt (i) maps agent i onto their observation target(s), the period-t action of
whom will be observed by i (in period t + 1)
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The network is opaque: key assumptions
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The distribution across observation
targets is:

I i.i.d.
I common knowledge
I asymptotically non-uniform

Let Φn be a discrete distribution with p.m.f. φn (i) and let ζn ≡
∑n

i=1 φn (i)2

be its Herfindahl index. Φn is asymptotically non-uniform if:

I limn→∞ φn (i) = 0 ∀i ; and
I limn→∞ ζn = ζ∗ where ζ∗ ∈ (0,1).
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Social networks have non-uniform distributions
The degree sequences of most social networks are well approximated
with a power law distribution (Jackson, 2008)

φn (i) = cn i−γ where γ > 1 ⇒ ζ∗ ∈ (0,1)
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What this buys #1: a transformed problem
Linear + i.i.d. + common knowledge means:

Et (i) [v t (δt (i))] =

∫
φ (j) Et (i) [v t (j)] dj

= Et (i)
[∫

φ (j) v t (j) dj
]

= Et (i)
[∫

v t (δt (j)) dj
]

= Et (i)
[

1:∼
v t

]

Et (i) [v t (δt (δt (i)))] = Et (i)
[

2:∼
v t

]
Et (i) [v t (δt (δt (δt (i))))] = Et (i)

[
3:∼
v t

]
...
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What this buys #2: we break the law of large numbers
An asymptotically non-uniform distribution means:

Var
[

1:∼
v t

]
= Var

[∫
φ (j) v t (j) dj

]
=

∫
Var [φ (j) v t (j)] dj

=

∫
φ (j)2 Σvvdj

= ζ∗Σvv 6= 0

Var
[

p:∼
v t

]
=
(
1− (1− ζ∗)p)Σvv

Cov
[

p:∼
v t ,

r :∼
v t

]
= Var

[
p:∼
v t

]
∀p < r

Define network shocks: z t ≡


1:∼
v t
2:∼
v t
...


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The main result
The full hierarchy of expectations is defined recursively and follows an
ARMA(1,1) process:

Xt ≡



x t

E t [Xt ]
1:∼

E t [Xt ]
2:∼

E t [Xt ]
...

 = FXt−1 + G1ut + G2z t + G3et + G4z t−1

An arbitrarily accurate approximation is obtained by defining cut-offs:
I k∗: Number of higher orders to include (how deep into the recursion)
I p∗: Number of higher weights to include (how deep into the network)
More detail
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A simplified example using Morris & Shin preferences

gt (i) = (1− β) Et (i) [xt ] + βEt (i) [gt ]

Uni-variate state: xt = ρxt−1 + ut ut ∼ N
(
0, σ2

u
)

Private signal: sp
t (i) = xt + vt (i) vt (i) ∼ N

(
0, σ2

v
)

Result:

ρ 0 0 0 · · ·

B C D 0

B 0 C D

B 0 0 C
. . .

...
. . .

F

xt = ρ xt−1 + ut

E t [Xt ] = B xt−1 + C E t−1 [Xt−1] + D
1:∼

E t−1 [Xt−1] + Hut
1:∼

E t [Xt ] = B xt−1 + C
1:∼

E t−1 [Xt−1] + D
2:∼

E t−1 [Xt−1] + Hut + Q
1:∼
v t

2:∼

E t [Xt ] = B xt−1 + C
2:∼

E t−1 [Xt−1] + D
3:∼

E t−1 [Xt−1] + Hut + Q
2:∼
v t

...
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A “true” aggregate shock #1

The hierarchy of simple-average expectations (x (0:∞)
t |t ) following a one

standard deviation shock to the underlying state
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(a) Without network learning (q = 0)
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(b) With network learning (q = 2)
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A “true” aggregate shock #2

Varying the number of other agents observed (q)
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(c) Simple-average expectations
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(d) Largest absolute eigenvalues of F
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A network shock #1
The hierarchy of simple-average expectations (x (0:∞)

t |t ) following a one
standard deviation network shock
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Implemented as a one standard deviation shock to
1:∼
v t and the corresponding conditional expected

value for higher-weighted averages with agents each observing two competitors (q = 2).
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A network shock #2

Recall that Var
[

1:∼
v t

]
= ζ∗σ2

v
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(e) Varying the degree of network irregularity (ζ∗)
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(f) Varying the relative innovation variance (σ2
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Adding a (lagged) public signal
Scenario 1: spub

t = 1′x (0:∞)
t−1|t−1 + et

Scenario 2: spub
t = 1′Xt−1 + et
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(g) A shock to the underlying state
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(h) A network shock
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Conclusions
I Network opacity lets us to combine (a) repeated actions; (b) rational

expectations; and (c) strategic complementarity

I Underlying state follows AR(1)⇒ Full hierarchy follows ARMA(1,1)
with λ1 (F ) > λ1 (A)

I Herding: network learning causes aggregate beliefs to overshoot the
truth following a shock to the underlying state

I Transitory idiosyncratic shocks have aggregate effects (b/c of
asymptotic non-uniformity) that are persistent (b/c of recursive
learning + herding)

I The model is readily nested into wider GE models of the economy
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Extra slides
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More detail: the Kalman filter

Et (i) [Xt ] = Et−1 (i) [Xt ] + Kt
(
st (i)− Et−1 (i) [st (i)]

)︸ ︷︷ ︸
serr

t|t−1(i)

Kt = Cov(Xt ,serr
t |t−1 (i))

[
Var

(
serr

t |t−1 (i)
)]−1

serr
t|t−1 (i) = M∗1 X err

t−1|t−1 (i)

+ N∗1 ut + N∗2 v t (i) + N∗3 et

= M1X err
t−1|t−1 (i) + M2X err

t−1|t−1 (δt−1 (i)) + M3Xt−1

+ N1ut + N2v t (i) + N3et + N4v t−1 (δt−1 (i)) + N5z t−1

Vt|t = Var
[
X err

t|t (i)
]

Wt|t= Cov
[
X err

t|t (i) ,X err
t|t (j)

]
Back
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