Peering into the mist: social learning over an opaque observation network

John Barrdear ${ }^{1}$
${ }^{1}$ Bank of England and CfM

May 2014

Disclaimer: The views expressed are those of the author and do not necessarily reflect the views of the Bank of England, MPC or FPC.

Can we incorporate network learning in a macro model with dispersed information?

Network learning is a natural extension of models of incomplete information and strategic interaction:

- Firms' price-setting.
- Firms' vacancy posting.
- Households with complementarity in consumption.
- Asset pricing with communication between traders.

The problem

Three of the defining features of macroeconomic models ...

- Agents act repeatedly.
- Agents update their beliefs in a Bayesian and model-consistent way.
- Agents act strategically (payoffs are affected by others' actions).
... are precisely those that prevent comprehensive analysis of network learning.

Who's afraid of infinite state vectors?

- k^{*} : The number of higher-order expectations to include
- p : The number of relevant compound expectations: linear combinations of individuals' expectations
- The dispersed info and global games literatures set $p=1$ (the simple average) and place decreasing weight on higher-order beliefs
- For network learning, p is the number of agents
- For macro models, the number of agents is infinite

This paper (in English)

- Bayesian learning about a hidden state
- Agents
- receive public and private signals
- observe each others' actions over an exogenous, directed network
- Repeated, simultaneous actions
- Strategic complementarity
- Key assumption: the network is opaque

I solve for the law of motion for the full hierarchy of expectations and show that an arbitrarily accurate finite approximation may be found.

- Herding: aggregate expectations overshoot the truth
- Transitory idiosyncratic shocks have persistent aggregate effects

(A small subset of) previous literature

- Network learning
- Dropping repeated actions: Banerjee (1992) ... Acemoglu, Dahleh, Lobel and Ozdaglar (2011)
- Dropping Bayesian updating: DeGroot (1974) ... DeMarzo, Vayanos and Zwiebel (2003); Golub \& Jackson (2010)
- Dropping strategic concerns: Gale \& Kariv (2003); Mueller-Frank (2013)
- Global games: Townsend (1983) ... Morris \& Shin (2002) ...
- Dispersed information: Woodford (2003); Nimark (2008, 2011); Lorenzoni (2009); Graham (2011)
- Idiosyncratic origins for aggregate volatility: Gabaix (2011); Acemoglu, Carvalho, Ozdaglar \& Tahbaz-Saleh (2012)

Outline

Introduction

A sketch of the theory

An illustrative example

Conclusions

The setup

Everything is linear
A continuum of agents, indexed $i \in[0,1]$
The hidden underlying state is $\operatorname{AR}(1): \boldsymbol{x}_{t}=\boldsymbol{A} \boldsymbol{x}_{t-1}+P \boldsymbol{u}_{t}$
The full state includes, at a minimum, the hierarchy of simple-average expectations about the underlying state: $\overline{\boldsymbol{x}}_{t \mid t}^{(0: \infty)} \in X_{t}$

Agents' common decision rule: $g_{t}(i)=\lambda_{1}^{\prime} E_{t}(i)\left[X_{t}\right]+\lambda_{2}^{\prime} \boldsymbol{x}_{t}+\boldsymbol{\lambda}_{3}^{\prime} \boldsymbol{v}_{t}(i)$
Example (Morris \& Shin):

$$
\begin{aligned}
g_{t}(i) & =(1-\beta) E_{t}(i)\left[x_{t}\right]+\beta E_{t}(i)\left[\bar{g}_{t}\right] \\
& =(1-\beta)\left[\begin{array}{llll}
1 & \beta & \beta^{2} & \cdots
\end{array}\right] E_{t}(i)\left[\begin{array}{c}
\bar{x}_{t}^{(0: \infty)}
\end{array}\right]
\end{aligned}
$$

Agents' information

Agents observe public and (conditionally independent) private signals

$$
\boldsymbol{s}_{t}^{p}(i)=D_{1} \boldsymbol{x}_{t}+D_{2} X_{t-1}+R_{1} \boldsymbol{v}_{t}(i)+R_{2} \boldsymbol{e}_{t}+R_{3} \boldsymbol{z}_{t-1}
$$

$\boldsymbol{v}_{t}(i)$ are agent i's idiosyncratic shocks, \boldsymbol{e}_{t} are public noise shocks and \boldsymbol{z}_{t} are network shocks: weighted sums of idiosyncratic shocks.

Agents also observe social signals

$$
\begin{aligned}
\boldsymbol{s}_{t}^{s}(i) & =\boldsymbol{g}_{t-1}\left(\delta_{t-1}(i)\right) \\
& =\lambda_{1}^{\prime} E_{t-1}\left(\delta_{t-1}(i)\right)\left[X_{t-1}\right]+\lambda_{2}^{\prime} \boldsymbol{x}_{t-1}+\boldsymbol{\lambda}_{3}^{\prime} \boldsymbol{v}_{t-1}\left(\delta_{t-1}(i)\right)
\end{aligned}
$$

$\delta_{t}(i)$ maps agent i onto their observation target(s), the period- t action of whom will be observed by i (in period $t+1$)

The network is opaque: key assumptions

The distribution across observation targets is:

- i.i.d.
- common knowledge
- asymptotically non-uniform

Let Φ_{n} be a discrete distribution with p.m.f. $\phi_{n}(i)$ and let $\zeta_{n} \equiv \sum_{i=1}^{n} \phi_{n}(i)^{2}$ be its Herfindahl index. Φ_{n} is asymptotically non-uniform if:

- $\lim _{n \rightarrow \infty} \phi_{n}(i)=0 \forall i$; and
- $\lim _{n \rightarrow \infty} \zeta_{n}=\zeta^{*}$ where $\zeta^{*} \in(0,1)$.

Social networks have non-uniform distributions

The degree sequences of most social networks are well approximated with a power law distribution (Jackson, 2008)

$$
\phi_{n}(i)=c_{n} i^{-\gamma} \text { where } \gamma>1 \Rightarrow \zeta^{*} \in(0,1)
$$

What this buys \#1: a transformed problem Linear + i.i.d. + common knowledge means:

$$
\begin{aligned}
E_{t}(i)\left[\boldsymbol{v}_{t}\left(\delta_{t}(i)\right)\right] & =\int \phi(j) E_{t}(i)\left[\boldsymbol{v}_{t}(j)\right] d j \\
& =E_{t}(i)\left[\int \phi(j) \boldsymbol{v}_{t}(j) d j\right] \\
& =E_{t}(i)\left[\int \boldsymbol{v}_{t}\left(\delta_{t}(j)\right) d j\right] \\
& =E_{t}(i)\left[{ }^{\left[\tilde{v}^{2}\right.}\right]
\end{aligned}
$$

What this buys \#1: a transformed problem Linear + i.i.d. + common knowledge means:

$$
\begin{aligned}
E_{t}(i)\left[\boldsymbol{v}_{t}\left(\delta_{t}(i)\right)\right] & =\int \phi(j) E_{t}(i)\left[\boldsymbol{v}_{t}(j)\right] d j \\
& =E_{t}(i)\left[\int \phi(j) \boldsymbol{v}_{t}(j) d j\right] \\
& =E_{t}(i)\left[\int \boldsymbol{v}_{t}\left(\delta_{t}(j)\right) d j\right] \\
& =E_{t}(i)\left[\begin{array}{l}
1 \tilde{\boldsymbol{v}}_{t} \\
\end{array}\right] \\
E_{t}(i)\left[\boldsymbol{v}_{t}\left(\delta_{t}\left(\delta_{t}(i)\right)\right)\right] & =E_{t}(i)\left[\begin{array}{c}
2 \cdot \tilde{v^{2}} \\
t
\end{array}\right] \\
E_{t}(i)\left[\boldsymbol{v}_{t}\left(\delta_{t}\left(\delta_{t}\left(\delta_{t}(i)\right)\right)\right)\right] & =E_{t}(i)\left[\begin{array}{l}
3 \\
\tilde{\boldsymbol{v}}_{t}
\end{array}\right]
\end{aligned}
$$

What this buys \#2: we break the law of large numbers

An asymptotically non-uniform distribution means:

$$
\begin{aligned}
\operatorname{Var}\left[\tilde{\boldsymbol{v}}_{t}\right] & =\operatorname{Var}\left[\int \phi(j) \boldsymbol{v}_{t}(j) d j\right] \\
& =\int \operatorname{Var}\left[\phi(j) \boldsymbol{v}_{t}(j)\right] d j \\
& =\int \phi(j)^{2} \Sigma_{v v} d j \\
& =\zeta^{*} \Sigma_{v v} \neq 0
\end{aligned}
$$

What this buys \#2: we break the law of large numbers

An asymptotically non-uniform distribution means:

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\boldsymbol{v}}_{t}\right] & =\operatorname{Var}\left[\int \phi(j) \boldsymbol{v}_{t}(j) d j\right] \\
& =\int \operatorname{Var}\left[\phi(j) \boldsymbol{v}_{t}(j)\right] d j \\
& =\int \phi(j)^{2} \Sigma_{v v} d j \\
& =\zeta^{*} \Sigma_{v v} \neq 0
\end{aligned}
$$

$$
\operatorname{Var}\left[\left[_{i}^{p \sim} \tilde{\boldsymbol{v}}_{t}\right]=\left(1-\left(1-\zeta^{*}\right)^{p}\right) \Sigma_{v v}\right.
$$

$$
\operatorname{Cov}\left[\rho^{\rho \cdot \tilde{\boldsymbol{v}_{t}},}, \tilde{\boldsymbol{v}}_{t}\right]=\operatorname{Var}\left[\tilde{\boldsymbol{v}}_{t} \cdot \tilde{\boldsymbol{v}}_{t}\right] \forall p<r
$$

What this buys \#2: we break the law of large numbers

An asymptotically non-uniform distribution means:

$$
\begin{aligned}
\operatorname{Var}\left[\tilde{\boldsymbol{v}}_{t}\right] & =\operatorname{Var}\left[\int \phi(j) \boldsymbol{v}_{t}(j) d j\right] \\
& =\int \operatorname{Var}\left[\phi(j) \boldsymbol{v}_{t}(j)\right] d j \\
& =\int \phi(j)^{2} \Sigma_{v v} d j \\
& =\zeta^{*} \Sigma_{v v} \neq 0
\end{aligned}
$$

$$
\operatorname{Var}\left[\left[_{i}^{p \sim \tilde{v}}\right]=\left(1-\left(1-\zeta^{*}\right)^{p}\right) \Sigma_{v v}\right.
$$

$\operatorname{Cov}\left[p^{\dot{p}} \tilde{\boldsymbol{v}}_{t}, \tilde{\boldsymbol{v}}_{t}\right]=\operatorname{Var}\left[{ }^{\rho} \tilde{\boldsymbol{v}}_{t}\right] \forall p<r$

The main result

The full hierarchy of expectations is defined recursively and follows an ARMA(1,1) process:

$$
X_{t} \equiv\left[\begin{array}{c}
\boldsymbol{x}_{t} \\
\bar{E}_{t}\left[X_{t}\right] \\
{ }_{1:}^{1} \tilde{E}_{t}\left[X_{t}\right] \\
2: \tilde{E}_{t}\left[X_{t}\right] \\
\vdots
\end{array}\right]=F X_{t-1}+G_{1} \boldsymbol{u}_{t}+G_{2} \boldsymbol{z}_{t}+G_{3} \boldsymbol{e}_{t}+G_{4} \boldsymbol{z}_{t-1}
$$

An arbitrarily accurate approximation is obtained by defining cut-offs:

- k^{*} : Number of higher orders to include (how deep into the recursion)
- p^{*} : Number of higher weights to include (how deep into the network)

Outline

> Introduction

> A sketch of the theory

An illustrative example

Conclusions

A simplified example using Morris \& Shin preferences

$$
g_{t}(i)=(1-\beta) E_{t}(i)\left[x_{t}\right]+\beta E_{t}(i)\left[\bar{g}_{t}\right]
$$

Uni-variate state: $\quad x_{t}=\rho x_{t-1}+u_{t} \quad u_{t} \sim N\left(0, \sigma_{u}^{2}\right)$
Private signal: $\quad s_{t}^{p}(i)=x_{t}+v_{t}(i) \quad v_{t}(i) \sim N\left(0, \sigma_{v}^{2}\right)$

Result:

A simplified example using Morris \& Shin preferences

$$
g_{t}(i)=(1-\beta) E_{t}(i)\left[x_{t}\right]+\beta E_{t}(i)\left[\bar{g}_{t}\right]
$$

Uni-variate state: $\quad x_{t}=\rho x_{t-1}+u_{t} \quad u_{t} \sim N\left(0, \sigma_{u}^{2}\right)$
Private signal: $\quad s_{t}^{p}(i)=x_{t}+v_{t}(i) \quad v_{t}(i) \sim N\left(0, \sigma_{v}^{2}\right)$
Result:

ρ	0	0	0	\cdots
B	C	D	0	
B	0	C	D	
B	0	0	C	\ddots
\vdots				\ddots

$$
\begin{aligned}
& x_{t}=\rho x_{t-1}+u_{t} \\
& \bar{E}_{t}\left[X_{t}\right]=B x_{t-1}+C \bar{E}_{t-1}\left[X_{t-1}\right]+D \tilde{E}_{t-1}\left[X_{t-1}\right]+H u_{t} \\
& { }^{1:} \tilde{E}_{t}\left[X_{t}\right]=B x_{t-1}+C{ }^{1:} \tilde{E}_{t-1}\left[X_{t-1}\right]+D^{2:} \tilde{E}_{t-1}\left[X_{t-1}\right]+H u_{t}+Q^{1:} \tilde{v}_{t} \\
& { }^{2:} \tilde{E}_{t}\left[X_{t}\right]=B x_{t-1}+C^{2:} \tilde{E}_{t-1}\left[X_{t-1}\right]+D{ }^{3:} \tilde{E}_{t-1}\left[X_{t-1}\right]+H u_{t}+Q^{2:} \tilde{v}_{t}
\end{aligned}
$$

A "true" aggregate shock \#1

The hierarchy of simple-average expectations $\left(\bar{x}_{t \mid t}^{(0 ; \infty)}\right)$ following a one standard deviation shock to the underlying state

(a) Without network learning $(q=0)$

(b) With network learning $(q=2)$

A "true" aggregate shock \#2

Varying the number of other agents observed (q)

(c) Simple-average expectations

(d) Largest absolute eigenvalues of F

A network shock \#1

The hierarchy of simple-average expectations $\left(\bar{x}_{t \mid t}^{(0: \infty)}\right)$ following a one standard deviation network shock

Implemented as a one standard deviation shock to ${ }^{1:} \tilde{\boldsymbol{v}}_{t}$ and the corresponding conditional expected value for higher-weighted averages with agents each observing two competitors ($q=2$).

A network shock \#2

Recall that $\operatorname{Var}\left[1 \tilde{\boldsymbol{v}}_{t}\right]=\zeta^{*} \sigma_{V}^{2}$

(e) Varying the degree of network irregularity $\left(\zeta^{*}\right)$

(f) Varying the relative innovation variance $\left(\sigma_{v}^{2} / \sigma_{u}^{2}\right)$

Adding a (lagged) public signal

> Scenario 1: $s_{t}^{\text {pub }}=\mathbf{1}^{\prime} \bar{x}_{t-1 \mid t-1}^{(0: \infty)}+e_{t}$
> Scenario 2: $s_{t}^{\text {pub }}=\mathbf{1}^{\prime} X_{t-1}+e_{t}$

(g) A shock to the underlying state

(h) A network shock

Outline

Introduction
\section*{A sketch of the theory}
An illustrative example

Conclusions

Conclusions

- Network opacity lets us to combine (a) repeated actions; (b) rational expectations; and (c) strategic complementarity
- Underlying state follows $\mathrm{AR}(1) \Rightarrow$ Full hierarchy follows ARMA(1,1) with $\lambda_{1}(F)>\lambda_{1}(A)$
- Herding: network learning causes aggregate beliefs to overshoot the truth following a shock to the underlying state
- Transitory idiosyncratic shocks have aggregate effects (b/c of asymptotic non-uniformity) that are persistent (b/c of recursive learning + herding)
- The model is readily nested into wider GE models of the economy

Extra slides

More detail: the Kalman filter

$$
\begin{aligned}
E_{t}(i)\left[X_{t}\right] & =E_{t-1}(i)\left[X_{t}\right]+K_{t} \underbrace{}_{\boldsymbol{s}_{t|t|-1}(i)-\boldsymbol{s}_{t-1}(i)}(i)\left[\boldsymbol{s}_{t}(i)\right]) \\
K_{t} & =\operatorname{Cov}\left(X_{t}, \boldsymbol{s}_{t \mid t-1}^{\mathrm{err}}(i)\right)\left[\operatorname{Var}\left(\boldsymbol{s}_{t \mid t-1}^{\mathrm{er}}(i)\right)\right]^{-1}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\boldsymbol{s}_{t \mid t-1}^{\mathrm{err}}(i) & =M_{1}^{*} X_{t-1 \mid t-1}^{\mathrm{err}}(i) & & \\
& +N_{1}^{*} \boldsymbol{u}_{t}+N_{2}^{*} \boldsymbol{v}_{t}(i)+N_{3}^{*} \boldsymbol{e}_{t} & & V_{t \mid t}=\operatorname{Var}\left[X_{t \mid t}^{\mathrm{err}}(i)\right] \\
& =M_{1} X_{t-1 \mid t-1}^{\mathrm{err}}(i)+M_{2} X_{t-1 \mid t-1}^{\mathrm{err}}\left(\delta_{t-1}(i)\right)+M_{3} X_{t-1} & W_{t \mid t}=\operatorname{Cov}\left[X_{t \mid t}^{\mathrm{err}}(i), X_{t \mid t}^{\mathrm{err}}(j)\right] \\
& +N_{1} \boldsymbol{u}_{t}+N_{2} \boldsymbol{v}_{t}(i)+N_{3} \mathbf{e}_{t}+N_{4} \boldsymbol{v}_{t-1}\left(\delta_{t-1}(i)\right)+N_{5} \boldsymbol{z}_{t-1} & &
\end{array}
$$

