Peering into the mist: social learning over an
opaque observation network

John Barrdear!

"Bank of England and CfM

May 2014

Disclaimer: The views expressed are those of the author and do not necessarily reflect the views of
the Bank of England, MPC or FPC.



Can we incorporate network learning in a macro model
with dispersed information?

Network learning is a natural extension of models of incomplete
information and strategic interaction:

» Firms’ price-setting.
» Firms’ vacancy posting.
» Households with complementarity in consumption.

» Asset pricing with communication between traders.
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The problem

Three of the defining features of macroeconomic models ...
» Agents act repeatedly.
» Agents update their beliefs in a Bayesian and model-consistent way.
» Agents act strategically (payoffs are affected by others’ actions).

... are precisely those that prevent comprehensive analysis of network
learning.



Who'’s afraid of infinite state vectors?

» k*: The number of higher-order
expectations to include

» p: The number of relevant
compound expectations: linear
combinations of individuals’
expectations

» The dispersed info and global games literatures set p = 1 (the
simple average) and place decreasing weight on higher-order beliefs

» For network learning, p is the number of agents

» For macro models, the number of agents is infinite



This paper (in English)

» Bayesian learning about a hidden state
» Agents

» receive public and private signals
» observe each others’ actions over an exogenous, directed network

» Repeated, simultaneous actions
» Strategic complementarity
» Key assumption: the network is opaque

| solve for the law of motion for the full hierarchy of expectations and
show that an arbitrarily accurate finite approximation may be found.

» Herding: aggregate expectations overshoot the truth
» Transitory idiosyncratic shocks have persistent aggregate effects



(A small subset of) previous literature

» Network learning

» Dropping repeated actions: Banerjee (1992) ... Acemoglu, Dahleh, Lobel and
Ozdaglar (2011)

» Dropping Bayesian updating: DeGroot (1974) ... DeMarzo, Vayanos and
Zwiebel (2003); Golub & Jackson (2010)

» Dropping strategic concerns: Gale & Kariv (2003); Mueller-Frank (2013)
» Global games: Townsend (1983) ... Morris & Shin (2002) ...

» Dispersed information: Woodford (2003); Nimark (2008, 2011);
Lorenzoni (2009); Graham (2011)

» Idiosyncratic origins for aggregate volatility: Gabaix (2011);
Acemoglu, Carvalho, Ozdaglar & Tahbaz-Saleh (2012)



Outline

A sketch of the theory
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The setup

Everything is linear
A continuum of agents, indexed i € [0, 1]
The hidden underlying state is AR(1): x; = Ax;_1 + Pu;

The full state includes, at a minimum, the hierarchy of simple-average
expectations about the underlying state: x§|t e X;

Agents’ common decision rule: g;: (/) = N, E; (i) [Xi] + A5Xt + A5 (i)
Example (Morris & Shin):

g1 (i) = (1= 8) E, (i) bl + BE, (1) [g]
=t =p[1 8 & I EG [



Agents’ information

Agents observe public and (conditionally independent) private signals
S’t) (I) = D1Xt + DQXt_1 + R1 V; (I) + Rget + R321_1

v: (i) are agent /’s idiosyncratic shocks, e; are public noise shocks and
Z; are network shocks: weighted sums of idiosyncratic shocks.

Agents also observe social signals

s7 (1) = g1 (8:-1 (1))
= XNiEi1 (60-1 (1) [Xe—1] + XoXt—1 + AgVig (011 (7))

¢ (i) maps agent i onto their observation target(s), the period-t action of
whom will be observed by i (in period t + 1)



The network is opaque: key assumptions
@/;‘@ The distribution across observation
targets is:

» common knowledge

» asymptotically non-uniform

Let &, be a discrete distribution with p.m.f. ¢, (i) and let ¢, = S, ¢, (/)?
be its Herfindahl index. &, is asymptotically non-uniform if:

> limp—00 ¢ (1) = 0 Vi; and
» limy_o0 ¢n = ¢* where ¢* € (0,1).
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Social networks have non-uniform distributions
The degree sequences of most social networks are well approximated
with a power law distribution (Jackson, 2008)

on(l)=cni™” wherey>1 = (" €(0,1)
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What this buys #1: a transformed problem

Linear + i.i.d. + common knowledge means:

E, (1) [ve (5 (i))] = / o

= Et(i)

) E(D)[ve (D]

[ewvi)d]

)|/ Vr(ér(j))dj]

W [~
Vl‘:|
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What this buys #1: a transformed problem

Linear + i.i.d. + common knowledge means:

5mwu&mn=/¢maunwmuﬁ
=5u>/MDwmw]
=auf/wwm»ﬂ

E, (i) [ve (6 (3¢ ()] = E, (1) [ V]
E () [ve (8¢ (0 (e (D)) = E, () [ Ve

12/25



What this buys #2: we break the law of large numbers

An asymptotically non-uniform distribution means:
Var [‘i?t] = Var [/w) v: () dj]
~ [ varloG)vi )l d

- / 6 ()2 T
=Xy #0
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What this buys #2: we break the law of large numbers
An asymptotically non-uniform distribution means:
var [v.] = var | [0 ve()
~ [ varloG)vi )l d
- [607zod

=CxXnw #0

Var [pi;t] =(1-(1-¢)P)Zw

Cov [p|7t, riﬂ] = Var ["v ,] Vp<r
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What this buys #2: we break the law of large numbers

An asymptotically non-uniform distribution means:
Var [‘i?t] = Var [/w) v: () dj]
~ [ varloG)vi )l d

. 2 .
= /¢(J) Twdf Define network shocks: z; = |,
- C*Zvv 7& 0 :

Var [pi;t] =(1-(1-¢)P)Zw

Cov [p|7t, 'Vt] = Var ["v ,] Vp<r
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The main result

The full hierarchy of expectations is defined recursively and follows an
ARMA(1,1) process:

Xi= | Et[X]| = FXe_1 + Giug + Gzt + Gser + Gaz;y_

An arbitrarily accurate approximation is obtained by defining cut-offs:
» k*: Number of higher orders to include (how deep into the recursion)
» p*: Number of higher weights to include (how deep into the network)
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Outline

An illustrative example
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A simplified example using Morris & Shin preferences
g: (i) = (1 = B) £ (i) [xt] + BE; (1) [g4]

Uni-variate state:  x; = px;_1 + U; ur ~ N (0,0%)
Private signal: s (i) = x + v (i) v (i) ~ N(0,09)
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A simplified example using Morris & Shin preferences
g: (i) = (1 = B) £ (i) [xt] + BE; (1) [g4]

Uni-variate state:  x; = px;_1 + U; ur ~ N (0,0%)
Private signal: s (i) = x + v (i) v (i) ~ N(0,09)

Result:
p 0 0 O Xt = p Xt—1 + U
_ _ i
B C D 0 ET [Xt] = BXt,1 + C Et71 [X[,1] + D E1‘71 [Xt,1] + HUt
B 0 C D T ti 2 i
Et [Xt] = BXt,1 =+ C Et71 [X[,‘]] + D E171 [Xf71] + HU; + Q Vi
B 0 0 C 2~ 2~ 3~ 2
. ET [Xt] = BXt,1 =+ C Et71 [X[,1] + D E171 [Xf71] + HUt + Q Vi

)
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A “true” aggregate shock #1

The hierarchy of simple-average expectations (x

—(0:00)

tt ) following a one

standard deviation shock to the underlying state
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(b) With network learning (g = 2)
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A “true” aggregate shock #2

Varying the number of other agents observed (q)
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(c) Simple-average expectations (d) Largest absolute eigenvalues of F
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A network shock #1

The hierarchy of simple-average expectations (x
standard deviation network shock
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Implemented as a one standard deviation shock to 17/: and the corresponding conditional expected
value for higher-weighted averages with agents each observing two competitors (g = 2).
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A network shock #2

Recall that Var [V t] = (*o2
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(f) Varying the relative innovation variance (¢2/c2)
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Adding a (lagged) public signal
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(g) A shock to the underlying state
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(h) A network shock
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Outline

Conclusions
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Conclusions
» Network opacity lets us to combine (a) repeated actions; (b) rational
expectations; and (c) strategic complementarity

» Underlying state follows AR(1) = Full hierarchy follows ARMA(1,1)
with A1 (F) > A (A)

» Herding: network learning causes aggregate beliefs to overshoot the
truth following a shock to the underlying state

» Transitory idiosyncratic shocks have aggregate effects (b/c of
asymptotic non-uniformity) that are persistent (b/c of recursive
learning + herding)

» The model is readily nested into wider GE models of the economy
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Extra slides
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More detail: the Kalman filter

E; (1) [Xi] = Er_1 (1) [Xd] + Ki(se (1) — Er_1 (7) [s¢ (7)])

[ J/
-~

S ()

K = Cov(X;, sy (1)) [Var (sﬁr{q (i))] 1

Sqii—1 (1) = MyXE iy (1)

+ Nrus + Ny v (i) + N ey ,
Vie = Var [ X7 ()]

= My XE oy (1) + MaXE™) g (01 (7)) + Ma X W= Cov {xg;f (i), X¢T (j)}
+ Niui + Novi (i) + Nzet + Naviq (61 (1) + Nsz;1
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